Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
J Dairy Sci ; 105(4): 3090-3101, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35123778

ABSTRACT

The objective of this study was to evaluate the effects of replacing magnesium oxide (MgO) with calcium-magnesium carbonate [CaMg(CO3)2] on ruminal fermentation with or without the addition of sodium bicarbonate (NaHCO3). Eight fermentors of a dual-flow continuous-culture system were distributed in a replicated (2) 4 × 4 Latin square design in a 2 × 2 factorial arrangement of treatments (magnesium sources × NaHCO3). The treatments tested were 0.21% MgO [MgO; dry matter (DM) basis; 144.8 mEq of dietary cation-anion difference (DCAD)]; 0.21% MgO + 0.50% NaHCO3 (MgO+NaHCO3; DM basis; 205.6 mEq of DCAD); 1.00% CaMg(CO3)2 [CaMg(CO3)2; DM basis; 144.8 mEq of DCAD]; and 1.00% CaMg(CO3)2 + 0.50% NaHCO3 [CaMg(CO3)2+NaHCO3; DM basis; 205.6 mEq of DCAD]. Diets were formulated to have a total of 0.28% of Mg (DM basis). The experiment consisted of 40 d, which was divided into 4 periods of 10 d each, where 7 d were used for adaptation and 3 d for sampling to determine pH, volatile fatty acids (VFA), ammonia (NH3-N), lactate, mineral solubility, N metabolism, and nutrient digestibility. The effects of Mg source [MgO vs. CaMg(CO3)2], NaHCO3 (with vs. without), and the interaction were tested with the MIXED procedure of SAS version 9.4 (SAS Institute). There was no Mg source × NaHCO3 interaction in the pH variables and mineral solubility, and Mg sources evaluated did not affect the variables related to ruminal pH and solubility of Mg. On the other hand, the inclusion of NaHCO3 increased the pH daily average, independent of Mg source, which led to a reduced time that pH was below 5.8 and decreased area under the curve. Total VFA and lactate concentration were similar among treatments regardless of NaHCO3 and Mg source; however, the molar proportion of isobutyrate and NH3-N concentration were lower in diets with CaMg(CO3)2 compared with MgO. Moreover, NaHCO3 inclusion increased NH3-N, total daily NH3-N flow, isobutyrate concentration, and acid detergent fiber digestibility. Our results showed that CaMg(CO3)2 leads to a lower NH3-N concentration and isobutyrate proportion. Therefore, because most of the tested variables were not significantly different between MgO and CaMg(CO3)2 when combined or not with NaHCO3, CaMg(CO3)2 can be a viable alternative source to replace MgO in dairy cow diets without affecting mineral solubility, ruminal pH, nutrient digestibility, total VFA, and the main ruminal VFA. Although Mg sources are known to have an alkalizing effect, NaHCO3 inclusion in diets with Mg supplementation allowed an increase in ruminal pH, as well as an increase in isobutyrate and NH3-N flow.


Subject(s)
Magnesium , Rumen , Animal Feed/analysis , Animals , Calcium/metabolism , Calcium Carbonate , Cattle , Diet/veterinary , Digestion , Female , Fermentation , Magnesium/metabolism , Magnesium Oxide/pharmacology , Nutrients , Rumen/metabolism , Sodium Bicarbonate/pharmacology
2.
J Dairy Sci ; 99(3): 2297-2307, 2016 Mar.
Article in English | MEDLINE | ID: mdl-26774717

ABSTRACT

The objectives were to assess the use of nicotinic acid (NA) to chronically (i.e., 74 h) manipulate plasma nonesterified fatty acid (NEFA) concentrations in partially feed-restricted lactating cows, determine whether the reduction of plasma NEFA altered responses to i.v. glucose tolerance test (ivGTT) and whether NA would attenuate an acute lipolytic stimuli of a ß-agonist challenge (ivBAC). Eight lactating dairy cows [244 ± 31 d in milk; 696 ± 63 kg of body weight (BW)] were blocked by breed and body condition score (3.2 ± 0.4) and randomly assigned to a sequence of 2 treatments in a crossover design. Treatments were 74-h continuous abomasal infusion of NA solution (3mg/h per kg of BW) as an antilipolytic agent to decrease plasma NEFA concentrations or the same volume of water (200 mL/h), concomitant with partial feed restriction. From 0 to 74 h of each experimental period, cows were feed-restricted to 33% of the ad libitum intake recorded during the prior 5 d. An ivGTT (0.25 g/kg of BW of glucose i.v.) and an ivBAC (4 nmol/kg of BW of isoproterenol hydrochloride, i.v.) were performed at 48 and 72 h, respectively. Intake was 24.1, 8.2, 8.0, and 8.0 kg of dry matter/d before restriction, on d 1, 2 and 3, respectively. Nicotinic acid decreased plasma NEFA and increased insulin and glucose concentrations during feed restriction. Nicotinic acid also led to greater glucose and insulin response areas under the curve during ivGTT [glucose: 6,562 vs. 5,056 (mg/dL) × 180 min; insulin: 6,042 vs. 2,502 (µIU/mL) × 180 min] and ivBAC [glucose: 535 vs. 240 (mg/dL) × 120 min; insulin: 1,283 vs. 222 (µIU/mL) × 120 min], and enhanced NEFA area under the curve during ivBAC [45,521 vs. 22,862 (µEq/L) × 120 min]. Milk, fat, and protein yields (29.1, 1.2, and 0.93 kg on d -2, respectively) decreased to 17.9, 0.81, and 0.56 kg for control, and 11.5, 0.54, and 0.39 kg for NA on d 3, respectively. Nicotinic acid may have decreased production by inhibiting the supply of NEFA for energy and milk fat synthesis. Milk urea nitrogen was increased by NA on d 2 (12.8 vs. 19.1mg/dL) and d 3 (11.6 vs. 17.8 mg/dL), probably due to a greater reliance on mobilized amino acids. Somatic cell count was increased by NA on d 3 (187 vs. 848 × 1,000 cells/mL). Patterns of glucose and insulin concentration observed during 74 h of NA infusion reflect a state of insulin resistance, which contrasts with shorter-term responses in nonlactating cows. Data suggest that long-term supraphysiological infusion of NA affected intermediary metabolism beyond antilipolysis and did not inhibit acute lipolytic stimuli of ivBAC.


Subject(s)
Adrenergic beta-Agonists/pharmacology , Blood Glucose/analysis , Cattle/physiology , Fatty Acids, Nonesterified/blood , Hypolipidemic Agents/pharmacology , Isoproterenol/pharmacology , Niacin/pharmacology , Abomasum/physiology , Administration, Intravenous/veterinary , Animals , Carbohydrate Metabolism/drug effects , Diet/veterinary , Female , Glucose Tolerance Test/veterinary , Lactation
3.
J Dairy Sci ; 97(4): 2297-304, 2014.
Article in English | MEDLINE | ID: mdl-24534511

ABSTRACT

Propionic acid is more hypophagic for cows with elevated hepatic acetyl coenzyme A (CoA) concentration in the postpartum period. The objective of this experiment was to evaluate the interaction of hepatic acetyl CoA concentration, which is elevated by intravenous lipid infusion, and intraruminal propionic acid infusion on feed intake and feeding behavior responses of lactating cows. Eight multiparous, ruminally cannulated, Holstein dairy cows past peak lactation were used in a replicated 4×4 Latin square experiment with a 2×2 factorial arrangement of treatments. Treatments were propionic acid (PI) infused intraruminally at 0.5mol/h for 18h starting 6h before feeding and behavior monitoring or sham control (CO), and intravenous jugular infusion of lipid (LI, Intralipid 20%; Baxter US, Deerfield, IL) or saline (SI, 0.9% NaCl; Baxter US) infused at 250mL/h for 12h before feeding and behavior monitoring, and then 500mL/h for 12h after feeding. Changes in plasma concentrations of metabolites and hormones and hepatic acetyl CoA from before infusion until the end of infusion were evaluated. We observed a tendency for an interaction between PI and LI for the change in plasma nonesterified fatty acid (NEFA) concentration from the preliminary day to the end of the infusion period. Infusion of propionic acid decreased dry matter intake (DMI) 15% compared with CO, but lipid infusion did not affect DMI over the 12h following feeding. Infusion of propionic acid tended to decrease hepatic acetyl CoA concentration from the preliminary day to the end of the infusion compared with CO, consistent with PI decreasing DMI by stimulating oxidation of acetyl CoA. Contrary to our expectations, LI did not increase concentration of NEFA or ß-hydroxybutyrate in plasma, concentration of acetyl CoA in the liver, or milk fat yield, suggesting that the infused lipid was stored or oxidized by extra-hepatic tissues. As a result, we detected no interaction between PI and LI for DMI. Although the effect of PI on DMI was consistent with our previous results, this lipid infusion model using cows past peak lactation was not useful to simulate the lipolytic state of cows in the postpartum period in this experiment.


Subject(s)
Animal Feed , Dietary Fats/administration & dosage , Feeding Behavior , Propionates/administration & dosage , 3-Hydroxybutyric Acid/blood , Acetyl Coenzyme A/metabolism , Animals , Cattle , Diet/veterinary , Fatty Acids, Nonesterified/blood , Female , Hormones/blood , Hydrogen-Ion Concentration , Lactation , Lipolysis , Liver/drug effects , Liver/enzymology , Milk/chemistry , Postpartum Period , Rumen/drug effects , Rumen/metabolism
4.
J Dairy Sci ; 96(7): 4615-23, 2013 Jul.
Article in English | MEDLINE | ID: mdl-23684018

ABSTRACT

We previously showed that propionic acid was more hypophagic than acetic acid when infused intraruminally in cows in the postpartum period and that the degree of hypophagia from short-term propionic acid infusion (18 h) was related to the acetyl coenzyme A (CoA) concentration in the liver. The objective of this experiment was to evaluate adaptation over time with longer-term infusions over 3 d. Twelve multiparous cows (2-13 d postpartum) were blocked by calving date and assigned randomly to treatment sequence in a crossover design experiment. The experiment was 12 d long with covariate periods preceding each 3-d infusion period. Treatments were 1.0 M propionic acid or 1.0 M acetic acid, infused intraruminally at 0.5 mol of volatile fatty acids/h beginning 6 h before feeding and continuing for 78 h with 3 d between infusions. Propionic acid decreased dry matter intake (DMI) relative to acetic acid (15.9 vs. 17.0 kg/d). However, a period-by- treatment interaction was detected for DMI. During period 1, propionic acid decreased DMI relative to acetic acid (14.3 vs. 17.5 kg/d) because of a reduction in meal size (1.30 vs. 1.65 kg), with no effect on intermeal interval. Propionic acid decreased DMI over the first 4 h following feeding (5.86 vs. 8.23 kg) but did not affect DMI 4 to 24 h after feeding. The depression in DMI in period 1 was positively related to hepatic acetyl-CoA concentration during the covariate period. Propionic acid was increasingly more hypophagic than acetic acid as hepatic acetyl-CoA concentration was elevated. No treatment-by-day interaction for DMI was observed, suggesting little or no measurable adaptation to treatment over the 3-d infusion period. These results suggest that hypophagia from propionic acid is enhanced when hepatic acetyl-CoA concentrations are elevated, such as when cows are in a lipolytic state.


Subject(s)
Cattle/physiology , Eating/drug effects , Lactation/physiology , Postpartum Period/physiology , Propionates/administration & dosage , Rumen/drug effects , Acetyl Coenzyme A/analysis , Animals , Fatty Acids, Volatile/analysis , Feeding Behavior/drug effects , Female , Fermentation , Hydrogen-Ion Concentration , Lipolysis , Liver/chemistry , Propionates/metabolism , Rumen/chemistry , Rumen/metabolism , Starch/metabolism
5.
J Dairy Sci ; 95(6): 3259-68, 2012 Jun.
Article in English | MEDLINE | ID: mdl-22612960

ABSTRACT

Thirty multiparous lactating dairy cows were used in a randomized block design experiment to evaluate factors related to the degree of hypophagia from intraruminal infusion of propionate. Cows between 3 and 40 d postpartum at the start of the experiment were blocked by calving date and randomly assigned to treatment. Treatments were 1.0 mol/L propionic acid or 1.0 mol/L acetic acid adjusted to pH 6 with sodium hydroxide and infused at 0.5 mol of volatile fatty acid/h from 6h before feeding until 12h after feeding. Propionate infusion decreased dry matter intake by 20.0%, total metabolizable energy intake by 22.5%, and plasma ß-hydroxybutyrate concentration by 54.3% compared with acetate infusion. Effects of treatment on dry matter intake were related to concentration of acetyl coenzyme A (CoA) in the liver; hypophagic effects of propionate compared with acetate increased as liver acetyl CoA concentration increased. Hypophagic effects of propionate are greater for cows with elevated concentrations of acetyl CoA in the liver.


Subject(s)
Acetyl Coenzyme A/analysis , Eating/drug effects , Liver/chemistry , Postpartum Period/drug effects , Propionates/pharmacology , 3-Hydroxybutyric Acid/blood , Animals , Cattle , Diet/veterinary , Energy Intake/drug effects , Female , Postpartum Period/physiology , Pregnancy , Propionates/administration & dosage
SELECTION OF CITATIONS
SEARCH DETAIL
...