Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
Cells ; 8(7)2019 07 13.
Article in English | MEDLINE | ID: mdl-31337065

ABSTRACT

The interaction of antigenic peptides (p) and major histocompatibility complexes (pMHC) with T-cell receptors (TCR) is one of the most important steps during the immune response. Here we present a molecular dynamics simulation study of bound and unbound TCR and pMHC proteins of the LC13-HLA-B*44:05-pEEYLQAFTY complex to monitor differences in relative orientations and movements of domains between bound and unbound states of TCR-pMHC. We generated local coordinate systems for MHC α1- and MHC α2-helices and the variable T-cell receptor regions TCR Vα and TCR Vß and monitored changes in the distances and mutual orientations of these domains. In comparison to unbound states, we found decreased inter-domain movements in the simulations of bound states. Moreover, increased conformational flexibility was observed for the MHC α2-helix, the peptide, and for the complementary determining regions of the TCR in TCR-unbound states as compared to TCR-bound states.


Subject(s)
Major Histocompatibility Complex , Peptides/chemistry , Receptors, Antigen, T-Cell, alpha-beta/chemistry , Binding Sites , Humans , Molecular Dynamics Simulation , Protein Binding , Protein Conformation
2.
J Exp Zool B Mol Dev Evol ; 316(6): 451-64, 2011 Sep 15.
Article in English | MEDLINE | ID: mdl-21688387

ABSTRACT

Teleost fishes have extra Hox gene clusters owing to shared or lineage-specific genome duplication events in rayfinned fish (actinopterygian) phylogeny. Hence, extrapolating between genome function of teleosts and human or even between different fish species is difficult. We have sequenced and analyzed Hox gene clusters of the Senegal bichir (Polypterus senegalus), an extant representative of the most basal actinopterygian lineage. Bichir possesses four Hox gene clusters (A, B, C, D); phylogenetic analysis supports their orthology to the four Hox gene clusters of the gnathostome ancestor. We have generated a comprehensive database of conserved Hox noncoding sequences that include cartilaginous, lobe-finned, and ray-finned fishes (bichir and teleosts). Our analysis identified putative and known Hox cis-regulatory sequences with differing depths of conservation in Gnathostoma. We found that although bichir possesses four Hox gene clusters, its pattern of conservation of noncoding sequences is mosaic between outgroups, such as human, coelacanth, and shark, with four Hox gene clusters and teleosts, such as zebrafish and pufferfish, with seven or eight Hox gene clusters. Notably, bichir Hox gene clusters have been invaded by DNA transposons and this trend is further exemplified in teleosts, suggesting an as yet unrecognized mechanism of genome evolution that may explain Hox cluster plasticity in actinopterygians. Taken together, our results suggest that actinopterygian Hox gene clusters experienced a reduction in selective constraints that surprisingly predates the teleost-specific genome duplication.


Subject(s)
Evolution, Molecular , Fishes/genetics , Gene Duplication/genetics , Homeodomain Proteins/genetics , Models, Genetic , Multigene Family/genetics , Phylogeny , Animals , Genes, Homeobox , Genome , Humans
3.
BMC Biol ; 5: 25, 2007 Jun 18.
Article in English | MEDLINE | ID: mdl-17577407

ABSTRACT

BACKGROUND: Non-coding RNAs (ncRNAs) are an emerging focus for both computational analysis and experimental research, resulting in a growing number of novel, non-protein coding transcripts with often unknown functions. Whole genome screens in higher eukaryotes, for example, provided evidence for a surprisingly large number of ncRNAs. To supplement these searches, we performed a computational analysis of seven yeast species and searched for new ncRNAs and RNA motifs. RESULTS: A comparative analysis of the genomes of seven yeast species yielded roughly 2800 genomic loci that showed the hallmarks of evolutionary conserved RNA secondary structures. A total of 74% of these regions overlapped with annotated non-coding or coding genes in yeast. Coding sequences that carry predicted structured RNA elements belong to a limited number of groups with common functions, suggesting that these RNA elements are involved in post-transcriptional regulation and/or cellular localization. About 700 conserved RNA structures were found outside annotated coding sequences and known ncRNA genes. Many of these predicted elements overlapped with UTR regions of particular classes of protein coding genes. In addition, a number of RNA elements overlapped with previously characterized antisense transcripts. Transcription of about 120 predicted elements located in promoter regions and other, previously un-annotated, intergenic regions was supported by tiling array experiments, ESTs, or SAGE data. CONCLUSION: Our computational predictions strongly suggest that yeasts harbor a substantial pool of several hundred novel ncRNAs. In addition, we describe a large number of RNA structures in coding sequences and also within antisense transcripts that were previously characterized using tiling arrays.


Subject(s)
Genome, Fungal , RNA, Fungal/genetics , RNA, Untranslated/genetics , Saccharomyces/genetics , Base Sequence , Computational Biology , Nucleic Acid Conformation , Saccharomyces cerevisiae/genetics , Sequence Alignment , Sequence Analysis, RNA , Species Specificity
4.
Genome Res ; 17(6): 852-64, 2007 Jun.
Article in English | MEDLINE | ID: mdl-17568003

ABSTRACT

Functional RNA structures play an important role both in the context of noncoding RNA transcripts as well as regulatory elements in mRNAs. Here we present a computational study to detect functional RNA structures within the ENCODE regions of the human genome. Since structural RNAs in general lack characteristic signals in primary sequence, comparative approaches evaluating evolutionary conservation of structures are most promising. We have used three recently introduced programs based on either phylogenetic-stochastic context-free grammar (EvoFold) or energy directed folding (RNAz and AlifoldZ), yielding several thousand candidate structures (corresponding to approximately 2.7% of the ENCODE regions). EvoFold has its highest sensitivity in highly conserved and relatively AU-rich regions, while RNAz favors slightly GC-rich regions, resulting in a relatively small overlap between methods. Comparison with the GENCODE annotation points to functional RNAs in all genomic contexts, with a slightly increased density in 3'-UTRs. While we estimate a significant false discovery rate of approximately 50%-70% many of the predictions can be further substantiated by additional criteria: 248 loci are predicted by both RNAz and EvoFold, and an additional 239 RNAz or EvoFold predictions are supported by the (more stringent) AlifoldZ algorithm. Five hundred seventy RNAz structure predictions fall into regions that show signs of selection pressure also on the sequence level (i.e., conserved elements). More than 700 predictions overlap with noncoding transcripts detected by oligonucleotide tiling arrays. One hundred seventy-five selected candidates were tested by RT-PCR in six tissues, and expression could be verified in 43 cases (24.6%).


Subject(s)
3' Untranslated Regions/genetics , GC Rich Sequence , Genome, Human , Quantitative Trait Loci , RNA, Untranslated/genetics , Transcription, Genetic , Base Sequence , Humans , Molecular Sequence Data , RNA, Messenger/genetics , Reverse Transcriptase Polymerase Chain Reaction
5.
Blood ; 110(4): 1330-3, 2007 Aug 15.
Article in English | MEDLINE | ID: mdl-17496199

ABSTRACT

Signal transducer and activator of transcription 3 (Stat3) is implicated in the pathogenesis of many malignancies and essential for IL-6-dependent survival and growth of multiple myeloma cells. Here, we demonstrate that the gene encoding oncogenic microRNA-21 (miR-21) is controlled by an upstream enhancer containing 2 Stat3 binding sites strictly conserved since the first observed evolutionary appearance of miR-21 and Stat3. MiR-21 induction by IL-6 was strictly Stat3 dependent. Ectopically raising miR-21 expression in myeloma cells in the absence of IL-6 significantly reduced their apoptosis levels. These data provide strong evidence that miR-21 induction contributes to the oncogenic potential of Stat3.


Subject(s)
Enhancer Elements, Genetic/genetics , Gene Expression Regulation, Neoplastic , Interleukin-6/pharmacology , MicroRNAs/physiology , Multiple Myeloma/genetics , Multiple Myeloma/metabolism , STAT3 Transcription Factor/metabolism , Apoptosis , Cell Line, Tumor , Chromatin Immunoprecipitation , Humans , Multiple Myeloma/drug therapy , Transcription, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...