Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 31
Filter
Add more filters










Publication year range
1.
Physiol Plant ; 176(3): e14404, 2024.
Article in English | MEDLINE | ID: mdl-38922894

ABSTRACT

Soil acidity is a global issue; soils with pH <4.5 are widespread in Europe. This acidity adversely affects nutrient availability to plants; pH levels <5.0 lead to aluminum (Al3+) toxicity, a significant problem that hinders root growth and nutrient uptake in faba bean (Vicia faba L.) and its symbiotic relationship with Rhizobium. However, little is known about the specific traits and tolerant genotypes among the European faba beans. This study aimed to identify response traits associated with tolerance to root zone acidity and Al3+ toxicity and potentially tolerant genotypes for future breeding efforts. Germplasm survey was conducted using 165 genotypes in a greenhouse aquaponics system. Data on the root and shoot systems were collected. Subsequently, 12 genotypes were selected for further phenotyping in peat medium, where data on physiological and morphological parameters were recorded along with biochemical responses in four selected genotypes. In the germplasm survey, about 30% of genotypes showed tolerance to acidity and approximately 10% exhibited tolerance to Al3+, while 7% showed tolerance to both. The phenotyping experiment indicated diverse morphological and physiological responses among treatments and genotypes. Acid and Al3+ increased proline concentration. Interaction between genotype and environment was observed for ascorbate peroxidase activity, malondialdehyde, and proline concentrations. Genomic markers associated with acidity and acid+Al3+-toxicity tolerances were identified using GWAS analysis. Four faba bean genotypes with varying levels of tolerance to acidity and Al3+ toxicity were identified.


Subject(s)
Aluminum , Genotype , Phenotype , Vicia faba , Vicia faba/genetics , Vicia faba/drug effects , Vicia faba/growth & development , Vicia faba/metabolism , Aluminum/toxicity , Soil/chemistry , Hydrogen-Ion Concentration , Plant Roots/drug effects , Plant Roots/genetics , Plant Roots/metabolism , Plant Roots/growth & development , Proline/metabolism , Adaptation, Physiological/genetics , Adaptation, Physiological/drug effects , Acids/metabolism
2.
J Nutr ; 154(4): 1165-1174, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38311065

ABSTRACT

BACKGROUND: The recommended transition toward more plant-based diets, particularly containing legumes, requires a wider knowledge of plant protein bioavailability. Faba beans are cultivated at different latitudes and are used increasingly in human nutrition. OBJECTIVES: We aimed to assess the nutritional quality of faba bean protein in healthy volunteers equipped with an intestinal tube to implement the ileal 15N balance method. METHODS: Nine volunteers completed the study (7 males, 2 females, aged 33 ± 10 y, BMI: 24.7 ± 2.6 kg/m2). They were equipped with a nasoileal tube. After fasting overnight, they ingested a test meal consisting of cooked mash of dehulled faba bean seeds (20 g protein per serving of approximately 250 g) intrinsically labeled with 15N. Samples of ileal contents, plasma, and urine were collected over an 8-h postprandial period. Undigested nitrogen (N) and amino acids (AAs) were determined using isotopic MS, and subsequently, ileal digestibility and digestible indispensable amino acid score (DIAAS) were calculated. The measurement of postprandial deamination allowed calculation of the net postprandial protein utilization (NPPU). RESULTS: The ileal N digestibility was 84.1% ± 7.7%. Postprandial deamination represented 19.2% ± 3.6% of ingested N, and the NPPU was 64.7% ± 9.7%. The ileal digestibility of individual AAs varied from 85.1% ± 13.7% for histidine to 94.2% ± 3.6% for glutamine + glutamate. The mean AA digestibility was ∼6 percentage points higher than the digestibility of N, reaching 89.8% ± 5.9%, whereas indispensable AA digestibility was 88.0% ± 7.3%. Histidine and tryptophan were the first limiting AAs [DIAAS = 0.77 (calculated by legume-specific N-to-protein conversion factor 5.4); 0.67 (by default factor 6.25)]. Sulfur AAs were limiting to a lesser extent [DIAA ratio = 0.94 (N × 5.4); 0.81 (N × 6.25)]. CONCLUSIONS: Protein ileal digestibility of cooked, dehulled faba beans in humans was moderate (<85%), but that of AAs was close to 90%. Overall protein quality was restricted by the limited histidine and tryptophan content. This trial was registered at clinicaltrials.gov as NCT05047757.


Subject(s)
Fabaceae , Vicia faba , Female , Humans , Male , Amino Acids/metabolism , Animal Feed , Diet , Dietary Proteins/metabolism , Digestion , Fabaceae/chemistry , Histidine/metabolism , Ileum/metabolism , Tryptophan/metabolism , Vicia faba/metabolism
3.
Front Plant Sci ; 14: 1069126, 2023.
Article in English | MEDLINE | ID: mdl-37051088

ABSTRACT

Fungi of genus Botrytis are important pathogens of legumes, causing gray mold and chocolate spot diseases. The use of molecular methods to identify pathogens has resulted in the discovery of several new Botrytis species and new associations of pathogens with diseases. Thus, chocolate spot of faba bean is now associated with at least four species: B. fabae, B. cinerea, B. pseudocinerea and B. fabiopsis. Species of Botrytis differ in host plant, pathogenicity, fungicide resistance and other relevant properties that affect disease control. The aim of this study was to identify the species of Botrytis isolated from different legume crops and to evaluate their in vitro pathogenicity. Between 2014 and 2019, 278 isolates of Botrytis were obtained from infected legumes in Latvia. A phylogenetic analysis was carried out by sequencing three nuclear genes, RPB2, HSP60, and G3PDH, considered to be diagnostic for species in this genus. A set of 21 representative isolates was selected for pathogenicity tests on detached leaves of faba bean, field pea, lupin and soybean using 5-mm mycelium-agar plugs. The diameter of the formed lesions under the inoculated plug was measured crosswise each day. The datasets were subjected to analysis of variance with the split-plot design of the experiment and repeated-measures model. Six species were identified: B. cinerea, B. fabae, B. pseudocinerea, B. fabiopsis, B. euroamericana and B. medusae. In addition to the expected combinations of host and pathogen, naturally occurring infections of B. fabiopsis were found on chickpea, B. euroamericana on faba bean and B. medusae in lupin seeds. Species and isolate had significant effects on pathogenicity on all crops tested. Several isolates were pathogenic on two or more host species: two of B. pseudocinerea, two of B. cinerea, two of B. fabiopsis and the one of B. medusae. One isolate of B. pseudocinerea and two of B. fabiopsis caused primary lesions on all five host species. The results show that these Botrytis species have a broad host range that should be borne in mind when planning crop sequences and rotations.

4.
Nature ; 615(7953): 652-659, 2023 03.
Article in English | MEDLINE | ID: mdl-36890232

ABSTRACT

Increasing the proportion of locally produced plant protein in currently meat-rich diets could substantially reduce greenhouse gas emissions and loss of biodiversity1. However, plant protein production is hampered by the lack of a cool-season legume equivalent to soybean in agronomic value2. Faba bean (Vicia faba L.) has a high yield potential and is well suited for cultivation in temperate regions, but genomic resources are scarce. Here, we report a high-quality chromosome-scale assembly of the faba bean genome and show that it has expanded to a massive 13 Gb in size through an imbalance between the rates of amplification and elimination of retrotransposons and satellite repeats. Genes and recombination events are evenly dispersed across chromosomes and the gene space is remarkably compact considering the genome size, although with substantial copy number variation driven by tandem duplication. Demonstrating practical application of the genome sequence, we develop a targeted genotyping assay and use high-resolution genome-wide association analysis to dissect the genetic basis of seed size and hilum colour. The resources presented constitute a genomics-based breeding platform for faba bean, enabling breeders and geneticists to accelerate the improvement of sustainable protein production across the Mediterranean, subtropical and northern temperate agroecological zones.


Subject(s)
Crops, Agricultural , Diploidy , Genetic Variation , Genome, Plant , Genomics , Plant Breeding , Plant Proteins , Vicia faba , Chromosomes, Plant/genetics , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , DNA Copy Number Variations/genetics , DNA, Satellite/genetics , Gene Amplification/genetics , Genes, Plant/genetics , Genetic Variation/genetics , Genome, Plant/genetics , Genome-Wide Association Study , Geography , Plant Breeding/methods , Plant Proteins/genetics , Plant Proteins/metabolism , Recombination, Genetic , Retroelements/genetics , Seeds/anatomy & histology , Seeds/genetics , Vicia faba/anatomy & histology , Vicia faba/genetics , Vicia faba/metabolism
5.
Ann Bot ; 131(3): 533-544, 2023 04 04.
Article in English | MEDLINE | ID: mdl-36655613

ABSTRACT

BACKGROUND AND AIMS: Limiting maximum transpiration rate (TR) under high vapour pressure deficit (VPD) works as a water conservation strategy. While some breeding programmes have incorporated this trait into some crops to boost yields in water-limited environments, its underlying physiological mechanisms and genetic regulation remain unknown for faba bean (Vicia faba). Thus, we aimed to identify genetic variation in the TR response to VPD in a population of faba bean recombinant inbred lines (RILs) derived from two parental lines with contrasting water use (Mélodie/2 and ILB 938/2). METHODS: Plants were grown in well-watered soil in a climate-controlled glasshouse with diurnally fluctuating VPD and light conditions. Whole plant transpiration was measured in a gas exchange chamber that tightly regulated VPD around the shoot under constant light, while whole-plant hydraulic conductance and its components (root and stem hydraulic conductance) were calculated from dividing TR by water potential gradients measured with a pressure chamber. KEY RESULTS: Although TR of Mélodie/2 increased linearly with VPD, ILB 938/2 limited its TR above 2.0 kPa. Nevertheless, Mélodie/2 had a higher leaf water potential than ILB 938/2 at both low (1.0 kPa) and high (3.2 kPa) VPD. Almost 90 % of the RILs limited their TR at high VPD with a break-point (BP) range of 1.5-3.0 kPa and about 10 % had a linear TR response to VPD. Thirteen genomic regions contributing to minimum and maximum transpiration, and whole-plant and root hydraulic conductance, were identified on chromosomes 1 and 3, while one locus associated with BP transpiration was identified on chromosome 5. CONCLUSIONS: This study provides insight into the physiological and genetic control of transpiration in faba bean and opportunities for marker-assisted selection to improve its performance in water-limited environments.


Subject(s)
Vicia faba , Vicia faba/genetics , Phenotype , Plant Leaves/physiology , Water , Plant Transpiration/genetics , Vapor Pressure
6.
Mol Breed ; 42(6): 35, 2022 Jun.
Article in English | MEDLINE | ID: mdl-37312967

ABSTRACT

Chocolate spot (CS), caused by Botrytis fabae Sard., is an important threat to global faba bean production. Growing resistant faba bean cultivars is, therefore, paramount to preventing yield loss. To date, there have been no reported quantitative trait loci (QTL) associated with CS resistance in faba bean. The objective of this study was to identify genomic regions associated with CS resistance using a recombinant inbred line (RIL) population derived from resistant accession ILB 938. A total of 165 RILs from the cross Mélodie/2 × ILB 938/2 were genotyped and evaluated for CS reactions under replicated controlled climate conditions. The RIL population showed significant variation in response to CS resistance. QTL analysis identified five loci contributing to CS resistance on faba bean chromosomes 1 and 6, accounting for 28.4% and 12.5%, respectively, of the total phenotypic variance. The results of this study not only provide insight into disease-resistance QTL, but also can be used as potential targets for marker-assisted breeding in faba bean genetic improvement for CS resistance. Supplementary Information: The online version contains supplementary material available at 10.1007/s11032-022-01307-7.

7.
Nat Plants ; 7(7): 923-931, 2021 07.
Article in English | MEDLINE | ID: mdl-34226693

ABSTRACT

Faba bean (Vicia faba L.) is a widely adapted and high-yielding legume cultivated for its protein-rich seeds1. However, the seeds accumulate the pyrimidine glucosides vicine and convicine, which can cause haemolytic anaemia (favism) in 400 million genetically predisposed individuals2. Here, we use gene-to-metabolite correlations, gene mapping and genetic complementation to identify VC1 as a key enzyme in vicine and convicine biosynthesis. We demonstrate that VC1 has GTP cyclohydrolase II activity and that the purine GTP is a precursor of both vicine and convicine. Finally, we show that cultivars with low vicine and convicine levels carry an inactivating insertion in the coding sequence of VC1. Our results reveal an unexpected, purine rather than pyrimidine, biosynthetic origin for vicine and convicine and pave the way for the development of faba bean cultivars that are free of these anti-nutrients.


Subject(s)
Catalysis , Glucosides/biosynthesis , Hydrolases/metabolism , Pyrimidinones/metabolism , Seeds/metabolism , Vicia faba/genetics , Vicia faba/metabolism , Crops, Agricultural/genetics , Crops, Agricultural/metabolism , Denmark , Gene Expression Regulation, Plant , Genes, Plant , Glucosides/genetics , Hydrolases/genetics , Seeds/genetics
8.
Legum Sci ; 3(3): e75, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34977588

ABSTRACT

Faba bean (Vicia faba L.), a member of the Fabaceae family, is one of the important food legumes cultivated in cool temperate regions. It holds great importance for human consumption and livestock feed because of its high protein content, dietary fibre, and nutritional value. Major faba bean breeding challenges include its mixed breeding system, unknown wild progenitor, and genome size of ~13 Gb, which is the largest among diploid field crops. The key breeding objectives in faba bean include improved resistance to biotic and abiotic stress and enhanced seed quality traits. Regarding quality traits, major progress on reduction of vicine-convicine and seed coat tannins, the main anti-nutritional factors limiting faba bean seed usage, have been recently achieved through gene discovery. Genomic resources are relatively less advanced compared with other grain legume species, but significant improvements are underway due to a recent increase in research activities. A number of bi-parental populations have been constructed and mapped for targeted traits in the last decade. Faba bean now benefits from saturated synteny-based genetic maps, along with next-generation sequencing and high-throughput genotyping technologies that are paving the way for marker-assisted selection. Developing a reference genome, and ultimately a pan-genome, will provide a foundational resource for molecular breeding. In this review, we cover the recent development and deployment of genomic tools for faba bean breeding.

9.
Front Microbiol ; 11: 1780, 2020.
Article in English | MEDLINE | ID: mdl-32849399

ABSTRACT

Pastures are an important part of crop and food systems in cold climates. Understanding how fertilization and plant species affect soil bacterial community diversity and composition is the key for understanding the role of soil bacteria in sustainable agriculture. To study the response of soil bacteria to different fertilization and cropping managements, a 3-year (2013-2015) field study was established. In the split-plot design, fertilizer treatment (unfertilized control, organic fertilizer, and synthetic fertilizer) was the main plot factor, and plant treatment [clear fallow, red clover (Trifolium pratense), timothy (Phleum pratense), and a mixture of red clover and timothy] was the sub-plot factor. Soil bacterial community diversity and composition, soil properties, and crop growth were investigated through two growing seasons in 2014 and 2015, with different nitrogen input levels. The community diversity measures (richness, Shannon diversity, and Shannon evenness) and composition changed over time (P < 0.05) and at different time scales. The community diversity was lower in 2014 than in 2015. The temporal differences were greater than the differences between treatments. The overall correlations of Shannon diversity to soil pH, NO 3 - , NH 4 + , and surplus nitrogen were positive and that of bacterial richness to crop dry matter yield was negative (P < 0.05). The major differences in diversity and community composition were found between fallow and planted treatments and between organic and synthetic fertilizer treatments. The differences between the planted plots were restricted to individual operational taxonomic units (OTUs). Soil moisture, total carbon content, and total nitrogen content correlated consistently with the community composition (P < 0.05). Compared to the unfertilized control, the nitrogen fertilizer loading enhanced the temporal change of community composition in pure timothy and in the mixture more than that in red clover, which further emphasizes the complexity of interactions between fertilization and cropping treatments on soil bacteria.

10.
Plant Sci ; 295: 110365, 2020 Jun.
Article in English | MEDLINE | ID: mdl-32534611

ABSTRACT

Phenotypic plasticity refers to changes expressed by a genotype across different environments and is one of the major means by which plants cope with environmental variability. Multi-fold differences in phenotypic plasticity have been noted across crops, with wild ancestors and landraces being more plastic than crops when under stress. Plasticity in response to abiotic stress adaptation, plant architecture, physio-reproductive and quality traits are multi-genic (QTL). Plasticity QTL (pQTL) were either collocated with main effect QTL and QEI (QTL × environment interaction) or located independently from the main effect QTL. For example, variations in root plasticity have been successfully introgressed to enhance abiotic stress adaptation in rice. The independence of genetic control of a trait and of its plasticity suggests that breeders may select for high or low plasticity in combination with high or low performance of economically important traits. Trait plasticity in stressful environments may be harnessed through breeding stress-tolerant crops. There exists a genetic cost associated with plasticity, so a better understanding of the trade-offs between plasticity and productivity is warranted prior to undertaking breeding for plasticity traits together with productivity in stress environments.


Subject(s)
Adaptation, Physiological , Edible Grain/growth & development , Genome, Plant/physiology , Plant Roots/physiology , Poaceae/physiology , Edible Grain/physiology , Genomics , Plant Roots/genetics , Poaceae/genetics , Poaceae/growth & development , Stress, Physiological
11.
J Plant Physiol ; 248: 153145, 2020 May.
Article in English | MEDLINE | ID: mdl-32145578

ABSTRACT

BACKGROUND AND AIMS: UVB radiation can rapidly induce gene regulation leading to cumulative changes for plant physiology and morphology. We hypothesized that a transgenerational effect of chronic exposure to solar short UV modulates the offspring's responses to UVB and blue light, and that the transgenerational effect is genotype dependent. METHODS: We established a factorial experiment combining two Vicia faba L. accessions, two parental UV treatments (full sunlight and exclusion of short UV, 290-350 nm), and four offspring light treatments from the factorial combination of UVB and blue light. The accessions were Aurora from southern Sweden, and ILB938 from Andean region of Colombia and Ecuador. KEY RESULTS: The transgenerational effect influenced morphological responses to blue light differently in the two accessions. In Aurora, when UVB was absent, blue light increased shoot dry mass only in plants whose parents were protected from short UV. In ILB938, blue light increased leaf area and shoot dry mass more in plants whose parents were exposed to short UV than those that were not. Moreover, when the offspring was exposed to UVB, the transgenerational effect decreased in ILB938 and disappeared in Aurora. For flavonoids, the transgenerational effect was detected only in Aurora: parental exposure to short UV was associated with a greater induction of total quercetin in response to UVB. Transcript abundance was higher in Aurora than in ILB938 for both CHALCONE SYNTHASE (99-fold) and DON-GLUCOSYLTRANSFERASE 1 (19-fold). CONCLUSIONS: The results supported both hypotheses. Solar short UV had transgenerational effects on progeny responses to blue and UVB radiation, and they differed between the accessions. These transgenerational effects could be adaptive by acclimation of slow and cumulative morphological change, and by early build-up of UV protection through flavonoid accumulation on UVB exposure. The differences between the two accessions aligned with their adaptation to contrasting UV environments.


Subject(s)
Sunlight , Ultraviolet Rays , Vicia faba/physiology , Adaptation, Physiological , Vicia faba/genetics , Vicia faba/growth & development
12.
Sci Rep ; 9(1): 17707, 2019 11 27.
Article in English | MEDLINE | ID: mdl-31776407

ABSTRACT

Genome walking (GW) refers to the capture and sequencing of unknown regions in a long DNA molecule that are adjacent to a region with a known sequence. A novel PCR-based method, palindromic sequence-targeted PCR (PST-PCR), was developed. PST-PCR is based on a distinctive design of walking primers and special thermal cycling conditions. The walking primers (PST primers) match palindromic sequences (PST sites) that are randomly distributed in natural DNA. The PST primers have palindromic sequences at their 3'-ends. Upstream of the palindromes there is a degenerate sequence (8-12 nucleotides long); defined adapters are present at the 5'-termini. The thermal cycling profile has a linear amplification phase and an exponential amplification phase differing in annealing temperature. Changing the annealing temperature to switch the amplification phases at a defined cycle controls the balance between sensitivity and specificity. In contrast to traditional genome walking methods, PST-PCR is rapid (two to three hours to produce GW fragments) as it uses only one or two PCR rounds. Using PST-PCR, previously unknown regions (the promoter and intron 1) of the VRN1 gene of Timothy-grass (Phleum pratense L.) were captured for sequencing. In our experience, PST-PCR had higher throughput and greater convenience in comparison to other GW methods.


Subject(s)
Genome, Plant , High-Throughput Nucleotide Sequencing/methods , Inverted Repeat Sequences , Polymerase Chain Reaction/methods , Sequence Analysis, DNA/methods , DNA Primers/chemistry , DNA Primers/genetics , High-Throughput Nucleotide Sequencing/standards , Introns , Plant Proteins/genetics , Poaceae/genetics , Polymerase Chain Reaction/standards , Promoter Regions, Genetic , Repressor Proteins/genetics , Sequence Analysis, DNA/standards , Temperature
13.
Front Plant Sci ; 10: 1063, 2019.
Article in English | MEDLINE | ID: mdl-31552067

ABSTRACT

Water deficit may occur at any stage of plant growth, with any intensity and duration. Phenotypic acclimation and the mechanism of adaptation vary with the evolutionary background of germplasm accessions and their stage of growth. Faba bean is considered sensitive to various kinds of drought. Hence, we conducted a greenhouse experiment in rhizotrons under contrasting watering regimes to explore shoot and root traits and drought avoidance mechanisms in young faba bean plants. Eight accessions were investigated for shoot and root morphological and physiological responses in two watering conditions with four replications. Pre-germinated seedlings were transplanted into rhizotron boxes filled with either air-dried or moist peat. The water-limited plants received 50-ml water at transplanting and another 50-ml water 4 days later, then no water was given until the end of the experimental period, 24 days after transplanting. The well-watered plants received 100 ml of water every 12 h throughout the experimental period. Root, stem, and leaf dry mass, their mass fractions, their dry matter contents, apparent specific root length and density, stomatal conductance, SPAD value, and Fv/Fm were recorded. Water deficit resulted in 3-4-fold reductions in shoot biomass, root biomass, and stomatal conductance along with 1.2-1.4-fold increases in leaf and stem dry matter content and SPAD values. Total dry mass and apparent root length density showed accession by treatment interactions. Accessions DS70622, DS11320, and ILB938/2 shared relatively high values of total dry mass and low values of stomatal conductance under water deficit but differed in root distribution parameters. In both treatments, DS70622 was characterized by finer roots that were distributed in both depth and width, whereas DS11320 and ILB938/2 produced less densely growing, thicker roots. French accession Mélodie/2 was susceptible to drought in the vegetative phase, in contrast to previous results from the flowering phase, showing the importance of timing of drought stress on the measured response. Syrian accession DS70622 explored the maximum root volume and maintained its dry matter production, with the difference from the other accessions being particularly large in the water-limited treatment, so it is a valuable source of traits for avoiding transient drought.

14.
Photochem Photobiol Sci ; 18(2): 434-447, 2019 Feb 13.
Article in English | MEDLINE | ID: mdl-30629071

ABSTRACT

Blue light and UV radiation shape a plant's morphology and development, but accession-dependent responses under natural conditions are unclear. Here we tested the hypothesis that two faba bean (Vicia faba L.) accessions adapted to different latitudes and altitudes vary in their responses to solar blue and UV light. We measured growth, physiological traits, phenolic profiles and expression of associated genes in a factorial experiment combining two accessions (Aurora, a Swedish cultivar adapted to high latitude and low altitude; ILB938, from the Andean region of Colombia and Ecuador, adapted to low latitude and high altitude) and four filter treatments created with plastic sheets: 1. transparent as control; 2. attenuated short UV (290-350 nm); 3. attenuated UV (290-400 nm); 4. attenuated blue and UV light. In both accessions, the exclusion of blue and UV light increased plant height and leaf area, and decreased transcript abundance of ELONGATED HYPOCOTYL 5 (HY5) and TYROSINE AMINOTRANSFERASE 3 (TAT3). Blue light and short UV induced the accumulation of epidermal and whole-leaf flavonoids, mainly quercetins, and the responses in the two accessions were through different glycosides. Filter treatments did not affect kaempferol concentration, but there were more tri-glycosides in Aurora and di-glycosides in ILB938. Furthermore, fewer quercetin glycosides were identified in ILB938. The transcript abundance was consistently higher in Aurora than in ILB938 for all seven investigated genes: HY5, TAT3, CHALCONE SYNTHASE (CHS), CHALCONE ISOMERASE (CHI), DON-GLUCOSYLTRANSFERASE 1 (DOGT1), ABA INSENSITIVE 2 (ABI2), AUXIN-INDUCIBLE 2-27 (IAA5). The two largest differences in transcript abundance between the two accessions across treatments were 132-fold in CHS and 30-fold in DOGT1 which may explain the accession-dependent glycosylation patterns. Our findings suggest that agronomic selection for adaptation to high altitude may favour phenotypes with particular adaptations to the light environment, including solar UV and blue light.


Subject(s)
Flavonoids/metabolism , Gene Expression Regulation, Plant/radiation effects , Sunlight , Ultraviolet Rays , Vicia faba/metabolism , Vicia faba/radiation effects , Phenols/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Vicia faba/genetics
15.
PeerJ ; 6: e4401, 2018.
Article in English | MEDLINE | ID: mdl-29492343

ABSTRACT

BACKGROUND: Soil moisture deficiency causes yield reduction and instability in faba bean (Vicia faba L.) production. The extent of sensitivity to drought stress varies across accessions originating from diverse moisture regimes of the world. Hence, we conducted successive greenhouse experiments in pots and rhizotrons to explore diversity in root responses to soil water deficit. METHODS: A set of 89 accessions from wet and dry growing regions of the world was defined according to the Focused Identification of Germplasm Strategy and screened in a perlite-sand medium under well watered conditions in a greenhouse experiment. Stomatal conductance, canopy temperature, chlorophyll concentration, and root and shoot dry weights were recorded during the fifth week of growth. Eight accessions representing the range of responses were selected for further investigation. Starting five days after germination, they were subjected to a root phenotyping experiment using the automated phenotyping platform GROWSCREEN-Rhizo. The rhizotrons were filled with peat-soil under well watered and water limited conditions. Root architectural traits were recorded five, 12, and 19 days after the treatment (DAT) began. RESULTS: In the germplasm survey, accessions from dry regions showed significantly higher values of chlorophyll concentration, shoot and root dry weights than those from wet regions. Root and shoot dry weight as well as seed weight, and chlorophyll concentration were positively correlated with each other. Accession DS70622 combined higher values of root and shoot dry weight than the rest. The experiment in GROWSCREEN-Rhizo showed large differences in root response to water deficit. The accession by treatment interactions in taproot and second order lateral root lengths were significant at 12 and 19 DAT, and the taproot length was reduced up to 57% by drought. The longest and deepest root systems under both treatment conditions were recorded by DS70622 and DS11320, and total root length of DS70622 was three times longer than that of WS99501, the shortest rooted accession. The maximum horizontal distribution of a root system and root surface coverage were positively correlated with taproot and total root lengths and root system depth. DS70622 and WS99501 combined maximum and minimum values of these traits, respectively. Thus, roots of DS70622 and DS11320, from dry regions, showed drought-avoidance characteristics whereas those of WS99501 and Mèlodie/2, from wet regions, showed the opposite. DISCUSSION: The combination of the germplasm survey and use of GROWSCREEN-Rhizo allowed exploring of adaptive traits and detection of root phenotypic markers for potential drought avoidance. The greater root system depth and root surface coverage, exemplified by DS70622 and DS11320, can now be tested as new sources of drought tolerance.

16.
Agron Sustain Dev ; 38(6): 63, 2018.
Article in English | MEDLINE | ID: mdl-30873223

ABSTRACT

Grain legumes produce high-quality protein for food and feed, and potentially contribute to sustainable cropping systems, but they are grown on only 1.5% of European arable land. Low temporal yield stability is one of the reasons held responsible for the low proportion of grain legumes, without sufficient quantitative evidence. The objective of this study was to compare the yield stability of grain legumes with other crop species in a northern European context and accounting for the effects of scale in the analysis and the data. To avoid aggregation biases in the yield data, we used data from long-term field experiments. The experiments included grain legumes (lupin, field pea, and faba bean), other broad-leaved crops, spring, and winter cereals. Experiments were conducted in the UK, Sweden, and Germany. To compare yield stability between grain legumes and other crops, we used a scale-adjusted yield stability indicator that accounts for the yield differences between crops following Taylor's Power Law. Here, we show that temporal yield instability of grain legumes (30%) was higher than that of autumn-sown cereals (19%), but lower than that of other spring-sown broad-leaved crops (35%), and only slightly greater than spring-sown cereals (27%). With the scale-adjusted yield stability indicator, we estimated 21% higher yield stability for grain legumes compared to a standard stability measure. These novel findings demonstrate that grain legume yields are as reliable as those of other spring-sown crops in major production systems of northern Europe, which could influence the current negative perception on grain legume cultivation. Initiatives are still needed to improve the crops agronomy to provide higher and more stable yields in future.

18.
PeerJ ; 5: e2963, 2017.
Article in English | MEDLINE | ID: mdl-28194315

ABSTRACT

BACKGROUND: Faba bean is an important starch-based protein crop produced worldwide. Soil acidity and aluminium toxicity are major abiotic stresses affecting its production, so in regions where soil acidity is a problem, there is a gap between the potential and actual productivity of the crop. Hence, we set out to evaluate acidity and aluminium tolerance in a range of faba bean germplasm using solution culture and pot experiments. METHODS: A set of 30 accessions was collected from regions where acidity and aluminium are or are not problems. The accessions were grown in solution culture and a subset of 10 was grown first in peat and later in perlite potting media. In solution culture, morphological parameters including taproot length, root regrowth and root tolerance index were measured, and in the pot experiments the key measurements were taproot length, plant biomass, chlorophyll concentration and stomatal conductance. RESULT: Responses to acidity and aluminium were apparently independent. Accessions Dosha and NC 58 were tolerant to both stress. Kassa and GLA 1103 were tolerant to acidity showing less than 3% reduction in taproot length. Aurora and Messay were tolerant to aluminium. Babylon was sensitive to both, with up to 40% reduction in taproot length from acidity and no detectable recovery from Al3+ challenge. DISCUSSION: The apparent independence of the responses to acidity and aluminium is in agreement with the previous research findings, suggesting that crop accessions separately adapt to H+ and Al3+ toxicity as a result of the difference in the nature of soil parent materials where the accession originated. Differences in rankings between experiments were minor and attributable to heterogeneity of seed materials and the specific responses of accessions to the rooting media. Use of perlite as a potting medium offers an ideal combination of throughput, inertness of support medium, access to leaves for detection of their stress responses, and harvest of clean roots for evaluation of their growth.

19.
J Agric Food Chem ; 65(10): 2155-2161, 2017 Mar 15.
Article in English | MEDLINE | ID: mdl-28233493

ABSTRACT

The concentration of residual barley prolamin (hordein) in gluten-free products is overestimated by the R5 ELISA method when calibrated against the wheat gliadin standard. The reason for this may be that the composition of the gliadin standard is different from the composition of hordeins. This study showed that the recognition of whole hordein by R5 antibody mainly came from C-hordein, which is more reactive than the other hordeins. The proportion of C-hordein in total hordein ranged from 16 to 33% of common Finnish barley cultivars used in this study and was always higher than that of ω-gliadin, the homologous protein class in the gliadin standard, which may account for the overestimation. Thus, a hordein standard is needed for barley prolamin quantification instead of the gliadin standard. When gluten-free oat flour was spiked with barley flour, the prolamin concentration was overestimated 1.8-2.5 times with the gliadin standard, whereas estimates in the correct range were obtained when the standard was 40% C-hordein mixed with an inert protein. A preparative-scale method was developed to isolate and purify C-hordein, and C-hordein is proposed as a reference material to calibrate barley prolamin quantification in R5-based assays.


Subject(s)
Enzyme-Linked Immunosorbent Assay/standards , Glutens/analysis , Calibration , Hordeum/chemistry , Reference Standards , Triticum/chemistry
20.
Food Chem ; 214: 597-605, 2017 Jan 01.
Article in English | MEDLINE | ID: mdl-27507515

ABSTRACT

Elimination of celiac-toxic prolamin peptides and proteins is essential for Triticeae products to be gluten-free. Instead of enzymatic hydrolysis, in this study we investigated metal-catalyzed oxidation of two model peptides, QQPFP, and PQPQLPY, together with a hordein isolate from barley (Hordeum vulgare L.). We established a multiple reaction monitoring (MRM) LC-MS method to detect and quantify proline oxidation fragments. In addition to fragmentation, aggregation and side chain modifications were identified, including free thiol loss, carbonyl formation, and dityrosine formation. The immunoreactivity of the oxidized hordein isolate was considerably decreased in all metal-catalyzed oxidation systems. Cleavage of peptides or protein fragments at the numerous proline residues partially accounts for the decrease. Metal-catalyzed oxidation can thus be used in the modification and elimination of celiac-toxic peptides and proteins.


Subject(s)
Glutens/chemistry , Hordeum/chemistry , Proline/chemistry , Oxidation-Reduction
SELECTION OF CITATIONS
SEARCH DETAIL
...