Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Plant Commun ; : 100882, 2024 Mar 16.
Article in English | MEDLINE | ID: mdl-38486453

ABSTRACT

Rapid plant immune responses in the appropriate cells are needed for effective defense against pathogens. Although transcriptome analysis is often used to describe overall immune responses, collection of transcriptome data with sufficient resolution in both space and time is challenging. We reanalyzed public Arabidopsis time-course transcriptome data obtained after low-dose inoculation with a Pseudomonas syringae strain expressing the effector AvrRpt2, which induces effector-triggered immunity in Arabidopsis. Double-peak time-course patterns are prevalent among thousands of upregulated genes. We implemented a multi-compartment modeling approach to decompose the double-peak pattern into two single-peak patterns for each gene. The decomposed peaks reveal an "echoing" pattern: the peak times of the first and second peaks correlate well across most upregulated genes. We demonstrated that the two peaks likely represent responses of two distinct cell populations that respond either cell autonomously or indirectly to AvrRpt2. Thus, the peak decomposition has extracted spatial information from the time-course data. The echoing pattern also indicates a conserved transcriptome response with different initiation times between the two cell populations despite different elicitor types. A gene set highly overlapping with the conserved gene set is also upregulated with similar kinetics during pattern-triggered immunity. Activation of a WRKY network via different entry-point WRKYs can explain the similar but not identical transcriptome responses elicited by different elicitor types. We discuss potential benefits of the properties of the WRKY activation network as an immune signaling network in light of pressure from rapidly evolving pathogens.

2.
BMC Plant Biol ; 16(1): 225, 2016 10 13.
Article in English | MEDLINE | ID: mdl-27733139

ABSTRACT

BACKGROUND: The ability to modulate levels of individual fatty acids within soybean oil has potential to increase shelf-life and frying stability and to improve nutritional characteristics. Commodity soybean oil contains high levels of polyunsaturated linoleic and linolenic acid, which contribute to oxidative instability - a problem that has been addressed through partial hydrogenation. However, partial hydrogenation increases levels of trans-fatty acids, which have been associated with cardiovascular disease. Previously, we generated soybean lines with knockout mutations within fatty acid desaturase 2-1A (FAD2-1A) and FAD2-1B genes, resulting in oil with increased levels of monounsaturated oleic acid (18:1) and decreased levels of linoleic (18:2) and linolenic acid (18:3). Here, we stack mutations within FAD2-1A and FAD2-1B with mutations in fatty acid desaturase 3A (FAD3A) to further decrease levels of linolenic acid. Mutations were introduced into FAD3A by directly delivering TALENs into fad2-1a fad2-1b soybean plants. RESULTS: Oil from fad2-1a fad2-1b fad3a plants had significantly lower levels of linolenic acid (2.5 %), as compared to fad2-1a fad2-1b plants (4.7 %). Furthermore, oil had significantly lower levels of linoleic acid (2.7 % compared to 5.1 %) and significantly higher levels of oleic acid (82.2 % compared to 77.5 %). Transgene-free fad2-1a fad2-1b fad3a soybean lines were identified. CONCLUSIONS: The methods presented here provide an efficient means for using sequence-specific nucleases to stack quality traits in soybean. The resulting product comprised oleic acid levels above 80 % and linoleic and linolenic acid levels below 3 %.


Subject(s)
Glycine max/metabolism , Oleic Acid/genetics , Plant Proteins/metabolism , Soybean Oil/genetics , alpha-Linolenic Acid/genetics , Gene Editing , Mutation/genetics , Oleic Acid/metabolism , Plant Proteins/genetics , Soybean Oil/metabolism , Glycine max/genetics , alpha-Linolenic Acid/metabolism
3.
PLoS One ; 11(5): e0154634, 2016.
Article in English | MEDLINE | ID: mdl-27176769

ABSTRACT

Plant genome engineering using sequence-specific nucleases (SSNs) promises to advance basic and applied plant research by enabling precise modification of endogenous genes. Whereas DNA is an effective means for delivering SSNs, DNA can integrate randomly into the plant genome, leading to unintentional gene inactivation. Further, prolonged expression of SSNs from DNA constructs can lead to the accumulation of off-target mutations. Here, we tested a new approach for SSN delivery to plant cells, namely transformation of messenger RNA (mRNA) encoding TAL effector nucleases (TALENs). mRNA delivery of a TALEN pair targeting the Nicotiana benthamiana ALS gene resulted in mutation frequencies of approximately 6% in comparison to DNA delivery, which resulted in mutation frequencies of 70.5%. mRNA delivery resulted in three-fold fewer insertions, and 76% were <10bp; in contrast, 88% of insertions generated through DNA delivery were >10bp. In an effort to increase mutation frequencies using mRNA, we fused several different 5' and 3' untranslated regions (UTRs) from Arabidopsis thaliana genes to the TALEN coding sequence. UTRs from an A. thaliana adenine nucleotide α hydrolases-like gene (At1G09740) enhanced mutation frequencies approximately two-fold, relative to a no-UTR control. These results indicate that mRNA can be used as a delivery vehicle for SSNs, and that manipulation of mRNA UTRs can influence efficiencies of genome editing.


Subject(s)
Endonucleases/metabolism , Mutagenesis, Site-Directed/methods , Plant Cells/metabolism , Transformation, Genetic , Base Sequence , DNA, Plant/metabolism , Mutation/genetics , Mutation Rate , Protoplasts/metabolism , RNA, Messenger/genetics , RNA, Messenger/metabolism , Nicotiana/genetics , Transcription Activator-Like Effector Nucleases/metabolism
4.
Plant Biotechnol J ; 14(1): 169-76, 2016 Jan.
Article in English | MEDLINE | ID: mdl-25846201

ABSTRACT

Cold storage of potato tubers is commonly used to reduce sprouting and extend postharvest shelf life. However, cold temperature stimulates the accumulation of reducing sugars in potato tubers. Upon high-temperature processing, these reducing sugars react with free amino acids, resulting in brown, bitter-tasting products and elevated levels of acrylamide--a potential carcinogen. To minimize the accumulation of reducing sugars, RNA interference (RNAi) technology was used to silence the vacuolar invertase gene (VInv), which encodes a protein that breaks down sucrose to glucose and fructose. Because RNAi often results in incomplete gene silencing and requires the plant to be transgenic, here we used transcription activator-like effector nucleases (TALENs) to knockout VInv within the commercial potato variety, Ranger Russet. We isolated 18 plants containing mutations in at least one VInv allele, and five of these plants had mutations in all VInv alleles. Tubers from full VInv-knockout plants had undetectable levels of reducing sugars, and processed chips contained reduced levels of acrylamide and were lightly coloured. Furthermore, seven of the 18 modified plant lines appeared to contain no TALEN DNA insertions in the potato genome. These results provide a framework for using TALENs to quickly improve traits in commercially relevant autotetraploid potato lines.


Subject(s)
Cold Temperature , Cryopreservation/methods , Gene Knockout Techniques , Gene Targeting , Solanum tuberosum/genetics , Acrylamide/analysis , Base Sequence , Carbohydrates/analysis , Genes, Plant , Mutation/genetics , Plants, Genetically Modified , Transcription Activator-Like Effector Nucleases/metabolism , Vacuoles/enzymology , beta-Fructofuranosidase/genetics
5.
Plant Biotechnol J ; 14(2): 533-42, 2016 Feb.
Article in English | MEDLINE | ID: mdl-26011187

ABSTRACT

Biopharmaceutical glycoproteins produced in plants carry N-glycans with plant-specific residues core α(1,3)-fucose and ß(1,2)-xylose, which can significantly impact the activity, stability and immunogenicity of biopharmaceuticals. In this study, we have employed sequence-specific transcription activator-like effector nucleases (TALENs) to knock out two α(1,3)-fucosyltransferase (FucT) and the two ß(1,2)-xylosyltransferase (XylT) genes within Nicotiana benthamiana to generate plants with improved capacity to produce glycoproteins devoid of plant-specific residues. Among plants regenerated from N. benthamiana protoplasts transformed with TALENs targeting either the FucT or XylT genes, 50% (80 of 160) and 73% (94 of 129) had mutations in at least one FucT or XylT allele, respectively. Among plants regenerated from protoplasts transformed with both TALEN pairs, 17% (18 of 105) had mutations in all four gene targets, and 3% (3 of 105) plants had mutations in all eight alleles comprising both gene families; these mutations were transmitted to the next generation. Endogenous proteins expressed in the complete knockout line had N-glycans that lacked ß(1,2)-xylose and had a significant reduction in core α(1,3)-fucose levels (40% of wild type). A similar phenotype was observed in the N-glycans of a recombinant rituximab antibody transiently expressed in the homozygous mutant plants. More importantly, the most desirable glycoform, one lacking both core α(1,3)-fucose and ß(1,2)-xylose residues, increased in the antibody from 2% when produced in the wild-type line to 55% in the mutant line. These results demonstrate the power of TALENs for multiplexed gene editing. Furthermore, the mutant N. benthamiana lines provide a valuable platform for producing highly potent biopharmaceutical products.


Subject(s)
Antibodies, Monoclonal/biosynthesis , Gene Editing/methods , Genetic Engineering/methods , Nicotiana/genetics , Polysaccharides/metabolism , Base Sequence , Fucose/metabolism , Glycosylation , Mutation/genetics , Plant Proteins/metabolism , Plants, Genetically Modified , Polysaccharides/chemistry , Protoplasts/metabolism , Rituximab/biosynthesis , Transcription Activator-Like Effector Nucleases/metabolism , Transformation, Genetic , Xylose/metabolism
7.
Plant Biotechnol J ; 12(7): 934-40, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24851712

ABSTRACT

Soybean oil is high in polyunsaturated fats and is often partially hydrogenated to increase its shelf life and improve oxidative stability. The trans-fatty acids produced through hydrogenation pose a health threat. Soybean lines that are low in polyunsaturated fats were generated by introducing mutations in two fatty acid desaturase 2 genes (FAD2-1A and FAD2-1B), which in the seed convert the monounsaturated fat, oleic acid, to the polyunsaturated fat, linoleic acid. Transcription activator-like effector nucleases (TALENs) were engineered to recognize and cleave conserved DNA sequences in both genes. In four of 19 transgenic soybean lines expressing the TALENs, mutations in FAD2-1A and FAD2-1B were observed in DNA extracted from leaf tissue; three of the four lines transmitted heritable FAD2-1 mutations to the next generation. The fatty acid profile of the seed was dramatically changed in plants homozygous for mutations in both FAD2-1A and FAD2-1B: oleic acid increased from 20% to 80% and linoleic acid decreased from 50% to under 4%. Further, mutant plants were identified that lacked the TALEN transgene and only carried the targeted mutations. The ability to create a valuable trait in a single generation through targeted modification of a gene family demonstrates the power of TALENs for genome engineering and crop improvement.


Subject(s)
Fatty Acid Desaturases/genetics , Glycine max/genetics , Plant Proteins/genetics , Soybean Oil/chemistry , Base Sequence , Fatty Acids/metabolism , Molecular Sequence Data , Mutagenesis, Site-Directed , Mutation , Nutritive Value/genetics , Oleic Acid/metabolism , Plants, Genetically Modified/chemistry , Plants, Genetically Modified/metabolism , Seeds/enzymology , Seeds/genetics , Seeds/metabolism , Sequence Alignment , Glycine max/enzymology , Glycine max/metabolism
8.
Nat Commun ; 4: 1762, 2013.
Article in English | MEDLINE | ID: mdl-23612303

ABSTRACT

Transcription activator-like effector nucleases are readily targetable 'molecular scissors' for genome engineering applications. These artificial nucleases offer high specificity coupled with simplicity in design that results from the ability to serially chain transcription activator-like effector repeat arrays to target individual DNA bases. However, these benefits come at the cost of an appreciably large multimeric protein complex, in which DNA cleavage is governed by the nonspecific FokI nuclease domain. Here we report a significant improvement to the standard transcription activator-like effector nuclease architecture by leveraging the partially specific I-TevI catalytic domain to create a new class of monomeric, DNA-cleaving enzymes. In vivo yeast, plant and mammalian cell assays demonstrate that the half-size, single-polypeptide compact transcription activator-like effector nucleases exhibit overall activity and specificity comparable to currently available designer nucleases. In addition, we harness the catalytic mechanism of I-TevI to generate novel compact transcription activator-like effector nuclease-based nicking enzymes that display a greater than 25-fold increase in relative targeted gene correction efficacy.


Subject(s)
Endonucleases/metabolism , Genome, Fungal/genetics , Protein Engineering/methods , Saccharomyces cerevisiae/genetics , Trans-Activators/metabolism , Animals , Base Sequence , CHO Cells , Catalytic Domain , Cricetinae , Cricetulus , Deoxyribonuclease I/metabolism , Endodeoxyribonucleases/chemistry , Endodeoxyribonucleases/metabolism , Endonucleases/chemistry , Molecular Sequence Data , Nicotiana
9.
PLoS Genet ; 5(12): e1000772, 2009 Dec.
Article in English | MEDLINE | ID: mdl-20011122

ABSTRACT

Two modes of plant immunity against biotrophic pathogens, Effector Triggered Immunity (ETI) and Pattern-Triggered Immunity (PTI), are triggered by recognition of pathogen effectors and Microbe-Associated Molecular Patterns (MAMPs), respectively. Although the jasmonic acid (JA)/ethylene (ET) and salicylic acid (SA) signaling sectors are generally antagonistic and important for immunity against necrotrophic and biotrophic pathogens, respectively, their precise roles and interactions in ETI and PTI have not been clear. We constructed an Arabidopsis dde2/ein2/pad4/sid2-quadruple mutant. DDE2, EIN2, and SID2 are essential components of the JA, ET, and SA sectors, respectively. The pad4 mutation affects the SA sector and a poorly characterized sector. Although the ETI triggered by the bacterial effector AvrRpt2 (AvrRpt2-ETI) and the PTI triggered by the bacterial MAMP flg22 (flg22-PTI) were largely intact in plants with mutations in any one of these genes, they were mostly abolished in the quadruple mutant. For the purposes of this study, AvrRpt2-ETI and flg22-PTI were measured as relative growth of Pseudomonas syringae bacteria within leaves. Immunity to the necrotrophic fungal pathogen Alternaria brassicicola was also severely compromised in the quadruple mutant. Quantitative measurements of the immunity levels in all combinatorial mutants and wild type allowed us to estimate the effects of the wild-type genes and their interactions on the immunity by fitting a mixed general linear model. This signaling allocation analysis showed that, contrary to current ideas, each of the JA, ET, and SA signaling sectors can positively contribute to immunity against both biotrophic and necrotrophic pathogens. The analysis also revealed that while flg22-PTI and AvrRpt2-ETI use a highly overlapping signaling network, the way they use the common network is very different: synergistic relationships among the signaling sectors are evident in PTI, which may amplify the signal; compensatory relationships among the sectors dominate in ETI, explaining the robustness of ETI against genetic and pathogenic perturbations.


Subject(s)
Plants/immunology , Bacteria/growth & development , Fungi/growth & development , Genes, Plant , Plants/genetics , Plants/microbiology , Signal Transduction/genetics
10.
Milbank Q ; 68(Suppl. 1): 143-74, 1990.
Article in English | MEDLINE | ID: mdl-11650414

ABSTRACT

AIDS is the first public health crisis in America to arise after the mid-century civil rights revolution. Reflecting the values of the civil rights movement, public health experts have drawn attention to the dangers of discrimination against individuals who are sick or at risk, and generally have expressed a preference for voluntary over compulsory measures to limit the spread of the illness. Remarkably, government officials--judges, legislators, and administrators--have largely acceded to the views of these experts. This perspective indicates a more sophisticated understanding of discrimination issues throughout society; experience with AIDS may itself help to transform and refine ideas about individual rights, especially the constitutional conception of "equal protection under the law."


Subject(s)
Acquired Immunodeficiency Syndrome , Acquired Immunodeficiency Syndrome/epidemiology , Civil Rights/legislation & jurisprudence , HIV Seropositivity , Jurisprudence , Patient Advocacy/legislation & jurisprudence , Prejudice , Public Policy , AIDS Serodiagnosis , Acquired Immunodeficiency Syndrome/diagnosis , Acquired Immunodeficiency Syndrome/prevention & control , Attitude to Health , Coercion , Communicable Disease Control , Confidentiality , Disabled Persons , Duty to Warn , Employment , Federal Government , Government , History , Homosexuality , Humans , Mandatory Programs , Mass Screening , Privacy , Social Justice , Social Welfare , Socioeconomic Factors , State Government , Stereotyping , Supreme Court Decisions , Terminology as Topic , United States , Voluntary Programs , Vulnerable Populations
SELECTION OF CITATIONS
SEARCH DETAIL