Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
Add more filters










Publication year range
1.
Environ Sci Pollut Res Int ; 31(21): 31273-31286, 2024 May.
Article in English | MEDLINE | ID: mdl-38632198

ABSTRACT

Polycyclic aromatic hydrocarbon (PAH) concentrations in the leaves and 1-year-old branches of three common tree species growing in a middle-sized city located in a moderate climate zone were estimated. For this purpose, PAH phytoaccumulation in Platanus × acerifolia, Celtis australis, and Tilia grandifolia species from highly urbanized, traffic congested, and highly PAH-contaminated streets was compared with trees from non-contaminated parks in the same urban core. The gathered data was used to define 17 PAH profiles, identify the main PAH pollution emission sources, and determine the organ and species specificity of PAHs accumulation. Due to the direct absorption of polluted air via stomata, the leaves accumulated up to 30% more PAHs compared to the 1-year-old branches. As expected, PAH concentrations were much higher in street trees, while heavy weight PAHs (with five and six rings) were accumulated in the highest concentrations. The highest foliar Σ17 PAH concentrations were detected in street-grown C. australis, followed by P. acerifolia and T. grandifolia (502.68, 488.45, and 339.47 ng g-1 dry weight (DW), respectively). The same pattern was noted for Σ17 PAHs in branches (414.89, 327.58, and 342.99 ng g-1 DW, respectively). Thus, T. grandifolia emerged as the least effective PAH sink as it accumulated up to ~ 40% less PAHs than P. acerifolia and C. australis leaves/branches. Among the 17 tracked PAHs, benzo[a]anthracene, benzo[a]pyrene, dibenzo[a,h]anthracene, and pyrene were found to have accumulated in the highest concentrations in all analyzed species irrespective of the site, and accounted for more than 50% of the total detected PAHs. Finally, a "black box" about species and organ specificity, as well as specific drivers that limit PAHs uptake capacity by trees, was opened, while this work provides insights into further PAH phytoremediation strategies.


Subject(s)
Environmental Monitoring , Plant Leaves , Polycyclic Aromatic Hydrocarbons , Tilia , Polycyclic Aromatic Hydrocarbons/metabolism , Plant Leaves/metabolism , Tilia/metabolism , Trees/metabolism , Cities , Air Pollutants
2.
Ecol Evol ; 14(3): e11102, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38524913

ABSTRACT

Genetics is a fast-moving field, and for conservation practitioners or ecologists, it can be bewildering. The choice of marker used in studies is fundamental; in the literature, preference has recently shifted from microsatellites to single nucleotide polymorphism (SNP) loci. Understanding how marker type affects estimates of population genetic parameters is important in the context of conservation, especially because the accuracy of estimates has a bearing on the actions taken to protect threatened species. We compare parameter estimates between seven microsatellites, 3761 SNP loci, and a random subset of 100 SNPs for the exact same 324 individual swift parrots, Lathamus discolor, and also use 457 additional samples from subsequent years to compare SNP estimates. Both marker types estimated a lower H O than H E. We show that microsatellites and SNPs mainly indicate a lack of spatial genetic structure, except when a priori collection locations were used on the SNP data in a discriminant analysis of principal components (DAPC). The 100-SNP subset gave comparable results to when the full dataset was used. Estimates of effective population size (N e) were comparable between markers when the same individuals were considered, but SNPs had narrower confidence intervals. This is reassuring because conservation assessments that rely on population genetic estimates based on a few microsatellites are unlikely to be nullified by the general shift toward SNPs in the literature. However, estimates between markers and datasets varied considerably when only adult samples were considered; hence, including samples of all age groups is recommended to be used when available. The estimated N e was higher for the full SNP dataset (2010-2019) than the smaller comparison data (2010-2015), which might be a better reflection of the species status. The lower precision of microsatellites may not necessarily be a barrier for most conservation applications; however, SNPs will improve confidence limits, which may be useful for practitioners.

3.
Curr Biol ; 33(18): R939-R940, 2023 09 25.
Article in English | MEDLINE | ID: mdl-37751701

ABSTRACT

Dejan Stojanovic and Robert Heinsohn introduce the Critically Endangered orange-bellied parrot from Australia.


Subject(s)
Asteraceae , Parrots , Animals , Australia
4.
Insects ; 14(5)2023 May 11.
Article in English | MEDLINE | ID: mdl-37233083

ABSTRACT

The Heterogynidae are a small family of moths consisting of a single genus Heterogynis and sixteen described species distributed in the Mediterranean region. A species new to science, Heterogynis serbica sp. nov., is described from the locality of Srebrenac, Mt. Kopaonik, Republic of Serbia, Balkan Peninsula, by applying an integrative taxonomic approach using morpho-anatomical characteristics, wing morphometics and DNA barcoding. Male genitalia, scanning electron micrographs of adult male head anatomy, abdominal tergites/sternites, cocoons and habitats of the closely related species H. serbica sp. nov. and H. zikici are discussed and illustrated. Photographs of adult males and females, cocoons, plants in which the cocoons were found and habitats are shown. Importantly, marked differences in genital structure and other morphological characters were noted. These differences were confirmed with forewing morphometrics and COI-based DNA barcoding results. Additionally, DNA barcodes for H. serbica sp. nov. and H. zikici were compared against previously available data for the genus to evaluate the phylogenetic relationships. We conclude that deep, previously unknown and unexpected intrageneric morphological diversity exists in the genus Heterogynis.

5.
Sci Total Environ ; 888: 164123, 2023 Aug 25.
Article in English | MEDLINE | ID: mdl-37182772

ABSTRACT

Process-based models and empirical modelling techniques are frequently used to (i) explore the sensitivity of tree growth to environmental variables, and (ii) predict the future growth of trees and forest stands under climate change scenarios. However, modelling approaches substantially influence predictions of the sensitivity of trees to environmental factors. Here, we used tree-ring width (TRW) data from 1630 beech trees from a network of 70 plots established across European mountains to build empirical predictive growth models using various modelling approaches. In addition, we used 3-PG and Biome-BGCMuSo process-based models to compare growth predictions with derived empirical models. Results revealed similar prediction errors (RMSE) across models ranging between 3.71 and 7.54 cm2 of basal area increment (BAI). The models explained most of the variability in BAI ranging from 54 % to 87 %. Selected explanatory variables (despite being statistically highly significant) and the pattern of the growth sensitivity differed between models substantially. We identified only five factors with the same effect and the same sensitivity pattern in all empirical models: tree DBH, competition index, elevation, Gini index of DBH, and soil silt content. However, the sensitivity to most of the climate variables was low and inconsistent among the empirical models. Both empirical and process-based models suggest that beech in European mountains will, on average, likely experience better growth conditions under both 4.5 and 8.5 RCP scenarios. The process-based models indicated that beech may grow better across European mountains by 1.05 to 1.4 times in warmer conditions. The empirical models identified several drivers of tree growth that are not included in the current process-based models (e.g., different nutrients) but may have a substantial effect on final results, particularly if they are limiting factors. Hence, future development of process-based models may build upon our findings to increase their ability to correctly capture ecosystem dynamics.


Subject(s)
Ecosystem , Fagus , Climate Change , Forests , Trees
6.
Heredity (Edinb) ; 130(5): 289-301, 2023 05.
Article in English | MEDLINE | ID: mdl-37016134

ABSTRACT

Genetic data can be highly informative for answering questions relevant to practical conservation efforts, but remain one of the most neglected aspects of species recovery plans. Framing genetic questions with reference to practical and tractable conservation objectives can help bypass this limitation of the application of genetics in conservation. Using a single-nucleotide polymorphism dataset from reduced-representation sequencing (DArTSeq), we conducted a genetic assessment of remnant populations of the endangered forty-spotted pardalote (Pardalotus quadragintus), a songbird endemic to Tasmania, Australia. Our objectives were to inform strategies for the conservation of genetic diversity in the species and estimate effective population sizes and patterns of inter-population movement to identify management units relevant to population conservation and habitat restoration. We show population genetic structure and identify two small populations on mainland Tasmania as 'satellites' of larger Bruny Island populations connected by migration. Our data identify management units for conservation objectives relating to genetic diversity and habitat restoration. Although our results do not indicate the immediate need to genetically manage populations, the small effective population sizes we estimated for some populations indicate that they are vulnerable to genetic drift, highlighting the urgent need to implement habitat restoration to increase population size and to conduct genetic monitoring. We discuss how our genetic assessment can be used to inform management interventions for the forty-spotted pardalote and show that by assessing contemporary genetic aspects, valuable information for conservation planning and decision-making can be produced to guide actions that account for genetic diversity and increase chances of recovery in species of conservation concern.


Subject(s)
Endangered Species , Songbirds , Animals , Songbirds/genetics , Genetic Drift , Polymorphism, Single Nucleotide , Population Density , Conservation of Natural Resources , Genetic Variation
7.
Ecol Lett ; 26(5): 789-796, 2023 May.
Article in English | MEDLINE | ID: mdl-36929598

ABSTRACT

Captive breeding and release to the wild is a globally important conservation tool. However, captivity can result in phenotypic changes that incur post-release fitness costs, especially if they affect strenuous or risky behaviours. Bird wing shape is critical for migration success and suboptimal phenotypes are strongly selected against. In this study, I demonstrate surprising plasticity of bird wing phenotypes in captivity for 4/16 studied species. In a model species, captive-born juveniles with wild wing phenotypes (a 1-mm longer distal primary flight feather) survived post-release at 2.7 times the rate of those with captive phenotypes (i.e. a shorter distal feather). Subtle phenotypic changes and their fitness impacts are more common than widely realised because they are easily overlooked. To improve captive breeding for conservation, practitioners must surveil phenotypic changes and find ways to mitigate them.


Subject(s)
Conservation of Natural Resources , Animals , Phenotype
8.
Biol Rev Camb Philos Soc ; 98(2): 434-449, 2023 04.
Article in English | MEDLINE | ID: mdl-36341701

ABSTRACT

The breeding of threatened species in captivity for release is a central tool in conservation biology. Given gloomy predictions for biodiversity trends in the Anthropocene, captive breeding will play an increasingly important role in preventing future extinctions. Relative to the wild, captive environments drastically alter selection pressures on animals. Phenotypic change in captive animals in response to these altered selection pressures can incur fitness costs post-release, jeopardising their potential contribution to population recovery. We explore the ways in which captive environments can hinder the expression of wild phenotypes. We also stress that the phenotypes of captive-bred animals differ from their wild counterparts in multiple ways that remain poorly understood. We propose five new research questions relating to the impact of captive phenotypes on reintroduction biology. With better use of monitoring and experimental reintroductions, a more robust evidence base should help inform adaptive management and minimise the phenotypic costs of captivity, improving the success of animal reintroductions.


Subject(s)
Conservation of Natural Resources , Endangered Species , Animals
9.
Proc Biol Sci ; 289(1985): 20220521, 2022 10 26.
Article in English | MEDLINE | ID: mdl-36285494

ABSTRACT

Scavenging by large carnivores is integral for ecosystem functioning by limiting the build-up of carrion and facilitating widespread energy flows. However, top carnivores have declined across the world, triggering trophic shifts within ecosystems. Here, we compare findings from previous work on predator decline against areas with recent native mammalian carnivore loss. Specifically, we investigate top-down control on utilization of experimentally placed carcasses by two mesoscavengers-the invasive feral cat and native forest raven. Ravens profited most from carnivore loss, scavenging for five times longer in the absence of native mammalian carnivores. Cats scavenged on half of all carcasses in the region without dominant native carnivores. This was eight times more than in areas where other carnivores were at high densities. All carcasses persisted longer than the three-week monitoring period in the absence of native mammalian carnivores, while in areas with high carnivore abundance, all carcasses were fully consumed. Our results reveal that top-carnivore loss amplifies impacts associated with carnivore decline-increased carcass persistence and carrion access for smaller scavengers. This suggests that even at low densities, native mammalian carnivores can fulfil their ecological functions, demonstrating the significance of global carnivore conservation and supporting management approaches, such as trophic rewilding.


Subject(s)
Carnivora , Ecosystem , Cats , Animals , Food Chain , Predatory Behavior , Birds , Fishes
10.
Proc Biol Sci ; 289(1978): 20220358, 2022 07 13.
Article in English | MEDLINE | ID: mdl-35858071

ABSTRACT

Mistletoes are hemiparasitic plants and keystone species in many ecosystems globally. Given predicted increases in drought frequency and intensity, mistletoes may be crucial for moderating drought impacts on community structure. Dependent on host vascular flows, mistletoes can succumb to stress when water availability falls, making them susceptible to mortality during drought. We counted mistletoe across greater than 350 000 km2 of southeastern Australia and conducted standardized bird surveys between 2016 and 2021, spanning a major drought event in 2018-2019. We aimed to identify predictors of mistletoe abundance and mortality and determine whether mistletoes might moderate drought impacts on woodland birds. Live mistletoe abundance varied with tree species composition, land use and presence of mistletoebirds. Mistletoe mortality was widespread, consistent with high 2018/2019 summer temperatures, low 2019/2020 summer rainfall and the interaction between summer temperatures and rainfall in 2019/2020. The positive association between surviving mistletoes and woodland birds was greatest in the peak drought breeding seasons of 2018/2019 and 2019/2020, particularly for small residents and insectivores. Paradoxically, mistletoes could moderate drought impacts on birds, but are themselves vulnerable to drought-induced mortality. An improved understanding of the drivers and dynamics of mistletoe mortality is needed to address potential cascading trophic impacts associated with mistletoe die-off.


Subject(s)
Mistletoe , Animals , Birds , Droughts , Ecosystem , Plant Breeding
12.
Sci Total Environ ; 800: 149536, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34392225

ABSTRACT

Associations of pedunculate oak (Quercus robur L.) radial growth with satellite-based soil moisture (SM) during the intensive tree growth period over a 30-year time span (1980-2010) were analyzed. This study included tree-ring width (TRW) chronologies from 22 stands located in four southeastern (SE) European countries (Slovenia, Croatia, Serbia and Bulgaria), which were grouped into three wetness groups (WGs): dry (<650 mm), moderate (650-750 mm), and wet (>750 mm), following the annual sum of precipitation. High correlation strengths during the intensive growth period-late spring and early summer months (April to June) was noted, which was opposite to the trend in late summer months. Variations in detrended TRW (TRWi) sensitivity to SM were also observed among the WGs. Specifically, the TRWi chronologies from the dry and wet WGs provided a greater number of significant correlations (p < 0.01) than trees from the moderate WG did. In wetter stands, TRWi correlated more negatively in the wettest (spring) months, while the correlation was weaker in summer months; these trends were opposite to those of trees growing in drier conditions that had the strongest responses to SM. A generalized additive mixed model (GAMM) based on 38 variables indicated that the fit for SM and radial growth was as strong as the fits for other traditionally measured parameters (temperature, precipitation, and river water level) and calculated drought indices (standardized precipitation index and the Ellenberg index) and TRW. Additionally, radial growth chronologies from drier sites had stronger fits with surrounding environmental factors. In conclusion, our findings suggest that SM can potentially be used as a reliable remote sensing indicator of the soil wetness in oak forests, which affects tree productivity and radial growth patterns and provides a new opportunity in dendrochronology research on larger scales.


Subject(s)
Quercus , Climate , Droughts , Soil , Trees
13.
Sci Data ; 8(1): 220, 2021 08 17.
Article in English | MEDLINE | ID: mdl-34404811

ABSTRACT

Primary forests, defined here as forests where the signs of human impacts, if any, are strongly blurred due to decades without forest management, are scarce in Europe and continue to disappear. Despite these losses, we know little about where these forests occur. Here, we present a comprehensive geodatabase and map of Europe's known primary forests. Our geodatabase harmonizes 48 different, mostly field-based datasets of primary forests, and contains 18,411 individual patches (41.1 Mha) spread across 33 countries. When available, we provide information on each patch (name, location, naturalness, extent and dominant tree species) and the surrounding landscape (biogeographical regions, protection status, potential natural vegetation, current forest extent). Using Landsat satellite-image time series (1985-2018) we checked each patch for possible disturbance events since primary forests were identified, resulting in 94% of patches free of significant disturbances in the last 30 years. Although knowledge gaps remain, ours is the most comprehensive dataset on primary forests in Europe, and will be useful for ecological studies, and conservation planning to safeguard these unique forests.


Subject(s)
Conservation of Natural Resources , Forests , Databases, Factual , Europe
14.
J Anim Ecol ; 90(10): 2268-2276, 2021 10.
Article in English | MEDLINE | ID: mdl-34013520

ABSTRACT

Global road networks facilitate habitat modification and are integral to human expansion. Many animals, particularly scavengers, use roads as they provide a reliable source of food, such as carrion left after vehicle collisions. Tasmania is often cited as the 'roadkill capital of Australia', with the isolated offshore islands in the Bass Strait experiencing similar, if not higher, levels of roadkill. However, native mammalian predators on the islands are extirpated, meaning the remaining scavengers are likely to experience lower interference competition. In this study, we used a naturally occurring experiment to examine how the loss of mammalian carnivores within a community impacts roadside foraging behaviour by avian scavengers. We monitored the locations of roadkill and forest ravens Corvus tasmanicus, an abundant scavenger species, on eight road transects across the Tasmanian mainland (high scavenging competition) and the Bass Strait islands (low scavenging competition). We represented raven observations as one-dimensional point patterns, using hierarchical Bayesian models to investigate the dependence of raven spatial intensity on habitat, season, distance to roadkill and route location. We found that roadkill carcasses were a strong predictor of raven presence along road networks. The effect of roadkill was amplified on roads on the Bass Strait islands, where roadside carrion was a predictor of raven presence across the entire year. In contrast, ravens were more often associated with roadkill on Tasmanian mainland roads in the autumn, when other resources were low. This suggests that in the absence of competing mammalian scavengers, ravens choose to feed on roadside carrion throughout the year, even in seasons when other resources are available. This lack of competition could be disproportionately benefiting forest ravens, leading to augmented raven populations and changes to the vertebrate community structure. Our study provides evidence that scavengers modify their behaviour in response to reduced scavenger species diversity, potentially triggering trophic shifts and highlighting the importance of conserving or reintroducing carnivores within ecosystems.


Subject(s)
Carnivora , Ecosystem , Animals , Bayes Theorem , Food Chain , Islands , Seasons
15.
Proc Biol Sci ; 288(1947): 20210225, 2021 03 31.
Article in English | MEDLINE | ID: mdl-33726592

ABSTRACT

Cultures in humans and other species are maintained through interactions among conspecifics. Declines in population density could be exacerbated by culture loss, thereby linking culture to conservation. We combined historical recordings, citizen science and breeding data to assess the impact of severe population decline on song culture, song complexity and individual fitness in critically endangered regent honeyeaters (Anthochaera phrygia). Song production in the remaining wild males varied dramatically, with 27% singing songs that differed from the regional cultural norm. Twelve per cent of males, occurring in areas of particularly low population density, completely failed to sing any species-specific songs and instead sang other species' songs. Atypical song production was associated with reduced individual fitness, as males singing atypical songs were less likely to pair or nest than males that sang the regional cultural norm. Songs of captive-bred birds differed from those of all wild birds. The complexity of regent honeyeater songs has also declined over recent decades. We therefore provide rare evidence that a severe decline in population density is associated with the loss of vocal culture in a wild animal, with concomitant fitness costs for remaining individuals. The loss of culture may be a precursor to extinction in declining populations that learn selected behaviours from conspecifics, and therefore provides a useful conservation indicator.


Subject(s)
Passeriformes , Songbirds , Animals , Humans , Male , Population Density , Species Specificity , Vocalization, Animal
16.
Nat Commun ; 11(1): 545, 2020 Jan 28.
Article in English | MEDLINE | ID: mdl-31992718

ABSTRACT

Severe droughts have the potential to reduce forest productivity and trigger tree mortality. Most trees face several drought events during their life and therefore resilience to dry conditions may be crucial to long-term survival. We assessed how growth resilience to severe droughts, including its components resistance and recovery, is related to the ability to survive future droughts by using a tree-ring database of surviving and now-dead trees from 118 sites (22 species, >3,500 trees). We found that, across the variety of regions and species sampled, trees that died during water shortages were less resilient to previous non-lethal droughts, relative to coexisting surviving trees of the same species. In angiosperms, drought-related mortality risk is associated with lower resistance (low capacity to reduce impact of the initial drought), while it is related to reduced recovery (low capacity to attain pre-drought growth rates) in gymnosperms. The different resilience strategies in these two taxonomic groups open new avenues to improve our understanding and prediction of drought-induced mortality.


Subject(s)
Droughts , Trees/growth & development , Adaptation, Physiological , Climate Change , Cycadopsida/growth & development , Ecology , Forests , Magnoliopsida/growth & development , Mortality , Soil/chemistry , Species Specificity , Stress, Physiological , Survival Analysis , Trees/classification , Water
17.
PLoS One ; 14(10): e0223953, 2019.
Article in English | MEDLINE | ID: mdl-31647830

ABSTRACT

Uncovering the population genetic histories of non-model organisms is increasingly possible through advances in next generation sequencing and DNA sampling of museum specimens. This new information can inform conservation of threatened species, particularly those for which historical and contemporary population data are unavailable or challenging to obtain. The critically endangered, nomadic regent honeyeater Anthochaera phrygia was abundant and widespread throughout south-eastern Australia prior to a rapid population decline and range contraction since the 1970s. A current estimated population of 250-400 individuals is distributed sparsely across 600,000 km2 from northern Victoria to southern Queensland. Using hybridization RAD (hyRAD) techniques, we obtained a SNP dataset from 64 museum specimens (date 1879-1960), 102 'recent' (1989-2012) and 52 'current' (2015-2016) wild birds sampled throughout the historical and contemporary range. We aimed to estimate population genetic structure, genetic diversity and population size of the regent honeyeater prior to its rapid decline. We then assessed the impact of the decline on recent and current population size, structure and genetic diversity. Museum sampling showed population structure in regent honeyeaters was historically low, which remains the case despite a severe fragmentation of the breeding range. Population decline has led to minimal loss of genetic diversity since the 1980's. Capacity to quantify the overall magnitude of both genetic diversity loss and population decline was limited by the poorer quality of genomic data derived from museum specimens. A rapid population decline, coupled with the regent honeyeater's high mobility, means a detectable genomic impact of this decline has not yet manifested. Extinction may occur in this nomadic species before a detectable genomic impact of small population size is realised. We discuss the implications for genetic management of endangered mobile species and enhancing the value of museum specimens in population genomic studies.


Subject(s)
Endangered Species , Genetic Variation , Genetics, Population , Genome , Population Dynamics , Songbirds/genetics , Animals , Gene Flow
18.
J Biophotonics ; 12(12): e201900218, 2019 12.
Article in English | MEDLINE | ID: mdl-31452335

ABSTRACT

Modern document protection relies on the simultaneous combination of many optical features with micron and submicron structures, whose complexity is the main obstacle for unauthorized copying. In that sense, documents are best protected by the diffractive optical elements generated lithographically and mass-produced by embossing. The problem is that the resulting security elements are identical, facilitating mass-production of both original and counterfeited documents. Here, we prove that each butterfly wing-scale is structurally and optically unique and can be used as an inimitable optical memory tag and applied for document security. Wing-scales, exhibiting angular variability of their color, were laser-cut and bleached to imprint cryptographic information of an authorized issuer. The resulting optical memory tag is extremely durable, as verified by several century-old insect specimens still retaining their coloration. The described technique is simple, amenable to mass-production, low cost and easy to integrate within the existing security infrastructure.


Subject(s)
Biomimetics , Butterflies/anatomy & histology , Documentation , Optical Phenomena , Safety , Wings, Animal , Animals
19.
Front Plant Sci ; 10: 849, 2019.
Article in English | MEDLINE | ID: mdl-31338099

ABSTRACT

According to climate projection models, the global temperature is expected to rise by at least 1.5°C by the end of this century. According to some studies the expected rise in Serbia is even higher. Global warming may result in creating new areas for forest growth. Although creating new forests would be a positive outcome in some areas, global warming can cause negative impacts in other areas, and this can lead to forest loss and the shift of geographical ranges, or even extinction, of plant species. The European beech is the dominant forest tree species in Serbia, featuring high ecological importance and economic value. In mixed or pure stands, beech forests cover approximately 660,400 ha, accounting for 29.3% of the total Serbian forest area. In the present study, the effects of climate change on the distribution of the European beech stands in Serbia, with an emphasis on their elevation shifts, were examined using species distribution models (SDMs). Data for the present tree cover in Serbia, climate projections, and environmental data were used for model building. The models were first tested against present inventory data. In these tests, the models were found to provide accurate projections, as shown by their true skills statistics (TSS) values ranging from 0.652 to 0.736 and area under the curve (AUC) values ranging from 0.868 to 0.937. The potential distribution patterns predicted by the models indicate that the European beech elevational distribution in Serbia would decrease, exhibiting a significant upward shift in elevation during the first part of this century. Current beech stand locations could be changed, and other areas at higher elevations may be more suitable for beech growth. After 2071, European beech stands at elevations below 500 m would be even smaller. This change is caused by temperature rise and occurrence of climate extremes. However, on the highest elevations, further upward shift of the species is not expected.

20.
Am Nat ; 193(1): 59-69, 2019 01.
Article in English | MEDLINE | ID: mdl-30624105

ABSTRACT

The positive abundance-occupancy relationship (AOR) is a pervasive pattern in macroecology. Similarly, the association between occupancy (or probability of occurrence) and abundance is also usually assumed to be positive and in most cases constant. Examples of AORs for nomadic species with variable distributions are extremely rare. Here we examined temporal and spatial trends in the AOR over 7 years for a critically endangered nomadic migrant that relies on dynamic pulses in food availability to breed. We predicted a negative temporal relationship, where local mean abundances increase when the number of occupied sites decreases, and a positive relationship between local abundances and the probability of occurrence. We also predicted that these patterns are largely attributable to spatiotemporal variation in food abundance. The temporal AOR was significantly negative, and annual food availability was significantly positively correlated with the number of occupied sites but negatively correlated with abundance. Thus, as food availability decreased, local densities of birds increased, and vice versa. The abundance-probability of occurrence relationship was positive and nonlinear but varied between years due to differing degrees of spatial aggregation caused by changing food availability. Importantly, high abundance (or occupancy) did not necessarily equate to high-quality habitat and may be indicative of resource bottlenecks or exposure to other processes affecting vital rates. Our results provide a rare empirical example that highlights the complexity of AORs for species that target aggregated food resources in dynamic environments.


Subject(s)
Endangered Species , Parrots , Animals , Population Density , Population Dynamics , Tasmania
SELECTION OF CITATIONS
SEARCH DETAIL
...