Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Molecules ; 27(13)2022 Jun 21.
Article in English | MEDLINE | ID: mdl-35807212

ABSTRACT

Sulfonamides are a classic group of chemotherapeutic drugs with a broad spectrum of pharmacological action, including anticancer activity. In this work, reversed-phase high-performance liquid chromatography and biomimetic chromatography were applied to characterize the lipophilicity of sulfonamide derivatives with proven anticancer activities against human colon cancer. Chromatographically determined lipophilicity parameters were compared with obtained logP, employing various computational approaches. Similarities and dissimilarities between experimental and computational logP were studied using principal component analysis, cluster analysis, and the sum of ranking differences. Furthermore, quantitative structure-retention relationship modeling was applied to understand the influences of sulfonamide's molecular properties on lipophilicity and affinity to phospholipids.


Subject(s)
Chemometrics , Chromatography, Reverse-Phase , Chromatography, High Pressure Liquid , Chromatography, Reverse-Phase/methods , Cluster Analysis , Humans , Principal Component Analysis , Quantitative Structure-Activity Relationship , Sulfonamides/pharmacology
2.
Nanotoxicology ; 16(3): 276-289, 2022 04.
Article in English | MEDLINE | ID: mdl-35713578

ABSTRACT

Nano-QSAR models can be effectively used for prediction of the biological activity of nanomaterials that have not been experimentally tested before. However, their use is associated with the need to have appropriate knowledge and skills in chemoinformatics. Thus, they are mainly aimed at specialists in the field. This significantly limits the potential group of recipients of the developed solutions. In this perspective, the purpose of the presented research was to develop an easily accessible and user-friendly web-based application that could enable the prediction of TiO2-based multicomponent nanomaterials cytotoxicity toward Chinese Hamster Ovary (CHO-K1) cells. The graphical user interface is clear and intuitive and the only information required from the user is the type and concentration of the metals which will be modifying TiO2-based nanomaterial. Thanks to this, the application will be easy to use not only by cheminformatics but also by specialists in the field of nanotechnology or toxicology, who will be able to quickly predict cytotoxicity of desired nanoclusters. We have performed case studies to demonstrate the features and utilities of developed application. The NanoMixHamster application is freely available at https://nanomixhamster.cloud.nanosolveit.eu/.


Subject(s)
Nanostructures , Animals , CHO Cells , Cricetinae , Cricetulus , Internet , Nanostructures/toxicity , Titanium
3.
Nanotoxicology ; 16(2): 183-194, 2022 03.
Article in English | MEDLINE | ID: mdl-35452346

ABSTRACT

Nano-QSAR model allows for prediction of the toxicity of materials that have not been experimentally tested before by linking the nano-related structural properties with the biological responses induced by nanomaterials. Prediction of adverse effects caused by substances without having to perform time- and cost-consuming experiments makes QSAR models promising tools for supporting risk assessment. However, very often, newly developed nano-QSAR models are not used in practice due to the complexity of their algorithms, the necessity to have experience in chemoinformatics, and their poor accessibility. In this perspective, the aim of this paper is to encourage developers of the QSAR models to take the effort to prepare user-friendly applications based on predictive models. This would make the developed models accessible to a wider community, and, in effect, promote their further application by regulators and decision-makers. Here, we describe a web-based application that enables to predict the transcriptomic pathway-level response perturbated in the lungs of mice exposed to multiwalled carbon nanotubes. The developed application is freely available at http://aop173-event1.nanoqsar-aop.com/apps/aop_app. It requires only two types of input information related to analyzed nanotubes (their length and diameter) to assess the doses that initiate the inflammation process that may lead to lung fibrosis.


Subject(s)
Nanotubes, Carbon , Pulmonary Fibrosis , Animals , Benchmarking , Lung , Mice , Nanotubes, Carbon/chemistry , Nanotubes, Carbon/toxicity , Pulmonary Fibrosis/chemically induced , Pulmonary Fibrosis/pathology , Transcriptome
SELECTION OF CITATIONS
SEARCH DETAIL