Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 95
Filter
1.
Respir Res ; 25(1): 207, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38750572

ABSTRACT

BACKGROUND: The evidence regarding effects of statins on exacerbation risk in COPD remains controversial. Previous studies often excluded patients with cardiovascular comorbidities despite their high prevalence in COPD and role for exacerbations. Based on the cardioprotective properties of statins, we hypothesised that statins may reduce the risk of exacerbations especially in patients with cardiovascular comorbidities. METHODS: One thousand eight hundred eighty seven patients of the German COPD cohort COSYCONET (COPD and Systemic Consequences Comorbidities Network) of GOLD grades 1-4 (37.8% female, mean age 64.78 ± 8.3) were examined at baseline and over a period of 4.5 years for the occurrence of at least one exacerbation or severe exacerbation per year in cross-sectional and longitudinal analyses adjusted for age, gender, BMI, GOLD grade and pack-years. Due to their collinearity, various cardiovascular diseases were tested in separate analyses, whereby the potential effect of statins in the presence of a specific comorbidity was tested as interaction between statins and comorbidity. We also identified patients who never took statins, always took statins, or initiated statin intake during the follow-up. RESULTS: One thousand three hundred six patients never took statins, 31.6% were statin user, and 12.9% initiated statins during the follow-up. Most cardiovascular diseases were significantly (p < 0.05)may associated with an increased risk of COPD exacerbations, but in none of them the intake of statins was a significant attenuating factor, neither overall nor in modulating the increased risk linked to the specific comorbidities. The results of the cross-sectional and longitudinal analyses were consistent with each other, also those regarding at least 1 exacerbation or at least 1 severe exacerbation per year. CONCLUSION: These findings complement the existing literature and may suggest that even in patients with COPD, cardiovascular comorbidities and a statin therapy that targets these comorbidities, the effects of statins on exacerbation risk are either negligible or more subtle than a reduction in exacerbation frequency. TRIAL REGISTRATION: Trial registration ClinicalTrials.gov, Identifier: NCT01245933. Other Study ID (BMBF grant): 01GI0881, registered 18 November 2010, study start 2010-11, primary completion 2013-12, study completion 2023-09. https://clinicaltrials.gov/study/NCT01245933?cond=COPD&term=COSYCONET&rank=3.


Subject(s)
Cardiovascular Diseases , Comorbidity , Hydroxymethylglutaryl-CoA Reductase Inhibitors , Pulmonary Disease, Chronic Obstructive , Humans , Pulmonary Disease, Chronic Obstructive/epidemiology , Pulmonary Disease, Chronic Obstructive/drug therapy , Pulmonary Disease, Chronic Obstructive/diagnosis , Female , Male , Hydroxymethylglutaryl-CoA Reductase Inhibitors/therapeutic use , Middle Aged , Aged , Cardiovascular Diseases/epidemiology , Cardiovascular Diseases/drug therapy , Cardiovascular Diseases/prevention & control , Cross-Sectional Studies , Cohort Studies , Longitudinal Studies , Disease Progression , Germany/epidemiology , Follow-Up Studies
2.
Respir Res ; 25(1): 56, 2024 Jan 24.
Article in English | MEDLINE | ID: mdl-38267944

ABSTRACT

BACKGROUND: MRproANP and COPAVP are prognostic markers for mortality in chronic obstructive pulmonary disease (COPD). Furthermore, these biomarkers predict mortality due to cardiovascular diseases, which are important prognostically determining comorbidities in patients with COPD. However, less is known about these biomarkers in recently diagnosed mild to moderate COPD. Therefore, we analyzed these biomarkers as potential predictors of mortality in recently diagnosed mild to moderate COPD. METHODS: The blood biomarkers considered were copeptin (COPAVP), midregional adrenomedullin (MRproADM), midregional proatrial naturetic peptide (MRproANP), and fibrinogen. Analyses were performed in patients with stable "recently diagnosed mild to moderate COPD" defined by GOLD grades 0-2 and diagnosis of COPD ≤ 5 years prior to inclusion into the COSYCONET cohort (COPD and Systemic Consequences-Comorbidities Network), using Cox regression analysis with stepwise adjustment for multiple COPD characteristics, comorbidities, troponin and NT-proBNP. RESULTS: 655 patients with recently diagnosed mild to moderate COPD were included. In the initial regression model, 43 of 655 patients died during the 6-year follow-up, in the final model 27 of 487. Regression analyses with adjustment for confounders identified COPAVP and MRproANP as statistically robust biomarkers (p < 0.05 each) of all-cause mortality, while MRproADM and fibrinogen were not. The fourth quartile of MRproANP (97 pmol/L) was associated with a hazard ratio of 4.5 (95%CI: 1.6; 12.8), and the fourth quartile of COPAVP (9.2 pmol/L) with 3.0 (1.1; 8.0). The results for MRproANP were confirmed in the total cohort of grade 0-4 (n = 1470 finally). CONCLUSION: In patients with recently diagnosed mild to moderate COPD, elevated values of COPVP and in particular MRproANP were robust, independent biomarkers for all-cause mortality risk after adjustment for multiple other factors. This suggests that these markers might be considered in the risk assessment of early COPD.


Subject(s)
Cardiovascular Diseases , Glycopeptides , Pulmonary Disease, Chronic Obstructive , Humans , Biomarkers , Fibrinogen , Pulmonary Disease, Chronic Obstructive/diagnosis
3.
Sci Rep ; 12(1): 19119, 2022 11 09.
Article in English | MEDLINE | ID: mdl-36351929

ABSTRACT

Exposure to beryllium (Be) can lead to lung pathologies, such as chronic beryllium disease (CBD). This occupational illness has been more prevalent among dental technicians compared to the non-exposed population. Although most manufacturers state that dental materials are Be-free, this prevalence raises the question of whether the materials are completely devoid of Be-traces. Thus, the objective of the present study was to analyze the elemental composition, with emphasis on Be, of a wide range of commercially available dental materials frequently used by dental laboratories. Samples of 32 different materials were collected and analyzed using inductively coupled plasma-optical emission spectrometry (ICP-OES) and X-ray fluorescence spectroscopy. The results showed that the Be content was below the limit of quantification in all included samples (< 0.00005 mass-%). Therefore, it can be concluded that possible traces of Be were below clinical relevance in dental materials. Exposure of dental technicians to alternative Be sources should be further evaluated.


Subject(s)
Beryllium , Occupational Exposure , Beryllium/analysis , Spectrometry, X-Ray Emission/methods , Dental Materials , Occupational Exposure/analysis
4.
J Intern Med ; 289(3): 404-410, 2021 03.
Article in English | MEDLINE | ID: mdl-33428219

ABSTRACT

BACKGROUND: We showed excellent adherence and satisfaction with our telehealth care (TC) approach for COPD. Here, the results of a consecutive randomized controlled trial are presented. METHODS: Patients were randomly assigned to TC or standard care (SC). During TC, patients answered six daily questions online, and focused on the early recognition of exacerbations, in addition to SC. RESULTS: The mean increase in COPD assessment test (CAT) was 1.8 vs. 3.6 points/year in the TC and SC groups, respectively (P = 0.0015). Satisfaction with care (VAS) at baseline was 8.2; at the end of SC, 8.5 (P = 0.062); and after TC, 8.8 (P < 0.001). We detected significantly more moderate exacerbations during TC. CONCLUSION: Whilst receiving TC, the slope of the CAT increase - an indicator of the naturally progressive course of COPD - was reduced by 50%. Satisfaction with care increased with TC. The higher number of detected moderate exacerbations probably indicates a higher diagnostic sensitivity than without TC.


Subject(s)
Pulmonary Disease, Chronic Obstructive/therapy , Telemedicine , Adult , Aged , Cross-Over Studies , Disease Progression , Female , Germany , Humans , Male , Middle Aged , Patient Satisfaction , Standard of Care , Surveys and Questionnaires , Switzerland , Symptom Flare Up
5.
Nat Commun ; 9(1): 4859, 2018 11 19.
Article in English | MEDLINE | ID: mdl-30451844

ABSTRACT

While young muscle is capable of restoring the original architecture of damaged myofibers, aged muscle displays a markedly reduced regeneration. We show that expression of the "anti-aging" protein, α-Klotho, is up-regulated within young injured muscle as a result of transient Klotho promoter demethylation. However, epigenetic control of the Klotho promoter is lost with aging. Genetic inhibition of α-Klotho in vivo disrupted muscle progenitor cell (MPC) lineage progression and impaired myofiber regeneration, revealing a critical role for α-Klotho in the regenerative cascade. Genetic silencing of Klotho in young MPCs drove mitochondrial DNA (mtDNA) damage and decreased cellular bioenergetics. Conversely, supplementation with α-Klotho restored mtDNA integrity and bioenergetics of aged MPCs to youthful levels in vitro and enhanced functional regeneration of aged muscle in vivo in a temporally-dependent manner. These studies identify a role for α-Klotho in the regulation of MPC mitochondrial function and implicate α-Klotho declines as a driver of impaired muscle regeneration with age.


Subject(s)
Aging/genetics , DNA, Mitochondrial/genetics , Mitochondria/genetics , Muscle, Skeletal/metabolism , Myoblasts/metabolism , Receptors, Cell Surface/genetics , Stem Cells/metabolism , Aging/metabolism , Aging/pathology , Animals , DNA Methylation , DNA, Mitochondrial/metabolism , Epigenesis, Genetic , Gene Expression Regulation, Developmental , Glucuronidase , Klotho Proteins , Mice , Mice, Inbred C57BL , Mice, Knockout , Mitochondria/metabolism , Muscle, Skeletal/pathology , Myoblasts/pathology , Promoter Regions, Genetic , RNA, Small Interfering/genetics , RNA, Small Interfering/metabolism , Receptors, Cell Surface/antagonists & inhibitors , Receptors, Cell Surface/metabolism , Regeneration/genetics , Signal Transduction , Stem Cells/pathology
6.
Lab Chip ; 17(1): 156-168, 2016 12 20.
Article in English | MEDLINE | ID: mdl-27910972

ABSTRACT

Distant metastasis is the major cause of breast cancer-related mortality, commonly emerging clinically after 5 or more years of seeming 'cure' of the primary tumor, indicating a quiescent dormancy. The lack of relevant accessible model systems for metastasis that recreate this latent stage has hindered our understanding of the molecular basis and the development of therapies against these lethal outgrowths. We previously reported on the development of an all-human 3D ex vivo hepatic microphysiological system that reproduces several features of liver physiology and enables spontaneous dormancy in a subpopulation of breast cancer cells. However, we observed that the dormant cells were localized primarily within the 3D tissue, while the proliferative cells were in contact with the polystyrene scaffold. As matrix stiffness is known to drive inflammatory and malignant behaviors, we explored the occurrence of spontaneous tumor dormancy and inflammatory phenotype. The microphysiological system was retrofitted with PEGDa-SynKRGD hydrogel scaffolding, which is softer and differs in the interface with the tissue. The microphysiological system incorporated donor-matched primary human hepatocytes and non-parenchymal cells (NPCs), with MDA-MB-231 breast cancer cells. Hepatic tissue in hydrogel scaffolds secreted lower levels of pro-inflammatory analytes, and was more responsive to inflammatory stimuli. The proportion of tumor cells entering dormancy was markedly increased in the hydrogel-supported tissue compared to polystyrene. Interestingly, an unexpected differential response of dormant cells to varying chemotherapeutic doses was identified, which if reflective of patient pathophysiology, has important implications for patient dosing regimens. These findings highlight the metastatic microphysiological system fitted with hydrogel scaffolds as a critical tool in the assessment and development of therapeutic strategies to target dormant metastatic breast cancer.


Subject(s)
Microfluidics/instrumentation , Tissue Scaffolds/chemistry , Antineoplastic Agents/pharmacology , Breast Neoplasms/metabolism , Breast Neoplasms/pathology , Cell Culture Techniques , Cell Line, Tumor , Cell Survival/drug effects , Chemokines/analysis , Cluster Analysis , Cytokines/analysis , Female , Fibrinogen/analysis , Hepatocytes/cytology , Hepatocytes/metabolism , Humans , Hydrogels/chemistry , Immunoassay , Intercellular Signaling Peptides and Proteins/analysis , Polystyrenes/chemistry , Signal Transduction , alpha 1-Antitrypsin/analysis
7.
Am J Transplant ; 16(6): 1653-80, 2016 06.
Article in English | MEDLINE | ID: mdl-26848550

ABSTRACT

The liver is an immunoregulatory organ in which a tolerogenic microenvironment mitigates the relative "strength" of local immune responses. Paradoxically, necro-inflammatory diseases create the need for most liver transplants. Treatment of hepatitis B virus, hepatitis C virus, and acute T cell-mediated rejection have redirected focus on long-term allograft structural integrity. Understanding of insults should enable decades of morbidity-free survival after liver replacement because of these tolerogenic properties. Studies of long-term survivors show low-grade chronic inflammatory, fibrotic, and microvascular lesions, likely related to some combination of environment insults (i.e. abnormal physiology), donor-specific antibodies, and T cell-mediated immunity. The resultant conundrum is familiar in transplantation: adequate immunosuppression produces chronic toxicities, while lightened immunosuppression leads to sensitization, immunological injury, and structural deterioration. The "balance" is more favorable for liver than other solid organ allografts. This occurs because of unique hepatic immune physiology and provides unintended benefits for allografts by modulating various afferent and efferent limbs of allogenic immune responses. This review is intended to provide a better understanding of liver immune microanatomy and physiology and thereby (a) the potential structural consequences of low-level, including allo-antibody-mediated injury; and (b) how liver allografts modulate immune reactions. Special attention is given to the microvasculature and hepatic mononuclear phagocytic system.


Subject(s)
Immunity, Cellular/immunology , Liver Transplantation , Allografts , Animals , Humans
8.
Cell Death Differ ; 23(7): 1140-51, 2016 07.
Article in English | MEDLINE | ID: mdl-26742431

ABSTRACT

Mitophagy is critical for cell homeostasis. Externalization of the inner mitochondrial membrane phospholipid, cardiolipin (CL), to the surface of the outer mitochondrial membrane (OMM) was identified as a mitophageal signal recognized by the microtubule-associated protein 1 light chain 3. However, the CL-translocating machinery remains unknown. Here we demonstrate that a hexameric intermembrane space protein, NDPK-D (or NM23-H4), binds CL and facilitates its redistribution to the OMM. We found that mitophagy induced by a protonophoric uncoupler, carbonyl cyanide m-chlorophenylhydrazone (CCCP), caused externalization of CL to the surface of mitochondria in murine lung epithelial MLE-12 cells and human cervical adenocarcinoma HeLa cells. RNAi knockdown of endogenous NDPK-D decreased CCCP-induced CL externalization and mitochondrial degradation. A R90D NDPK-D mutant that does not bind CL was inactive in promoting mitophagy. Similarly, rotenone and 6-hydroxydopamine triggered mitophagy in SH-SY5Y cells was also suppressed by knocking down of NDPK-D. In situ proximity ligation assay (PLA) showed that mitophagy-inducing CL-transfer activity of NDPK-D is closely associated with the dynamin-like GTPase OPA1, implicating fission-fusion dynamics in mitophagy regulation.


Subject(s)
Cardiolipins/metabolism , Mitochondria/metabolism , Mitochondrial Membranes/metabolism , Mitophagy , Nucleoside Diphosphate Kinase D/metabolism , Animals , Autophagy/drug effects , Carbonyl Cyanide m-Chlorophenyl Hydrazone/toxicity , Cardiolipins/analysis , Cell Line , GTP Phosphohydrolases/metabolism , HeLa Cells , Humans , Lysosomes/metabolism , Lysosomes/pathology , Mice , Microtubule-Associated Proteins/metabolism , Mitochondria/pathology , Mitophagy/drug effects , Mutagenesis, Site-Directed , Nucleoside Diphosphate Kinase D/antagonists & inhibitors , Nucleoside Diphosphate Kinase D/genetics , Oxidopamine/pharmacology , Protein Binding , RNA Interference , Rotenone/pharmacology
9.
Cell Death Dis ; 6: e1729, 2015 Apr 23.
Article in English | MEDLINE | ID: mdl-25906152

ABSTRACT

Caspase-3 is the best known executioner caspase in apoptosis. We generated caspase-3 knockout (C3KO) and knockdown human colorectal cancer cells, and found that they are unexpectedly sensitized to DNA-damaging agents including 5-fluorouracil (5-FU), etoposide, and camptothecin. C3KO xenograft tumors also displayed enhanced therapeutic response and cell death to 5-FU. C3KO cells showed intact apoptosis and activation of caspase-7 and -9, impaired processing of caspase-8, and induction of necrosis in response to DNA-damaging agents. This form of necrosis is associated with HMGB1 release and ROS production, and suppressed by genetic or pharmacological inhibition of RIP1, MLKL1, or caspase-8, but not inhibitors of pan-caspases or RIP3. 5-FU treatment led to the formation of a z-VAD-resistant pro-caspase-8/RIP1/FADD complex, which was strongly stabilized by caspase-3 KO. These data demonstrate a key role of caspase-3 in caspase-8 processing and suppression of DNA damage-induced necrosis, and provide a potentially novel way to chemosensitize cancer cells.


Subject(s)
Caspase 3/deficiency , Colonic Neoplasms/enzymology , Colonic Neoplasms/genetics , Nuclear Pore Complex Proteins/metabolism , RNA-Binding Proteins/metabolism , Caspase 3/genetics , Caspase 3/metabolism , Cell Death/physiology , DNA Damage , HCT116 Cells , HEK293 Cells , HT29 Cells , Humans , Nuclear Pore Complex Proteins/genetics , RNA-Binding Proteins/genetics , Transfection
10.
Placenta ; 36(4): 389-96, 2015 Apr.
Article in English | MEDLINE | ID: mdl-25662615

ABSTRACT

INTRODUCTION: Monoallelic expression of imprinted genes is necessary for placental development and normal fetal growth. Differentially methylated domains (DMDs) largely determine the parental-specific monoallelic expression of imprinted genes. Maternally derived DNA (cytosine-5-) -methyltransferase 1o (DNMT1o) maintains DMDs during the eight-cell stage of development. DNMT1o-deficient mouse placentas have a generalized disruption of genomic imprints. Previous studies have demonstrated that DNMT1o deficiency alters placental morphology and broadens the embryonic weight distribution in late gestation. Lipids are critical for fetal growth. Thus, we assessed the impact of disrupted imprinting on placental lipids. METHODS: Lipids were quantified from DNMT1o-deficient mouse placentas and embryos at E17.5 using a modified Folch method. Expression of select genes critical for lipid metabolism was quantified with RT-qPCR. Mitochondrial morphology was assessed by TEM and mitochondrial aconitase and cytoplasmic citrate concentrations quantified. DMD methylation was determined by EpiTYPER. RESULTS: We found that DNMT1o deficiency is associated with increased placental triacylglycerol levels. Neither fetal triacylglycerol concentrations nor expression of select genes that mediate placental lipid transport were different from wild type. Placental triacylglycerol accumulation was associated with impaired beta-oxidation and abnormal citrate metabolism with decreased mitochondrial aconitase activity and increased cytoplasmic citrate concentrations. Loss of methylation at the MEST DMD was strongly associated with placental triacylglycerol accumulation. DISCUSSION: A generalized disruption of genomic imprints leads to triacylglycerol accumulation and abnormal mitochondrial function. This could stem directly from a loss of methylation at a given DMD, such as MEST, or represent a consequence of abnormal placental development.


Subject(s)
DNA (Cytosine-5-)-Methyltransferases/deficiency , Fetal Growth Retardation/etiology , Genomic Imprinting , Lipid Metabolism , Mitochondria/metabolism , Placenta Diseases/genetics , Placenta/metabolism , Aconitate Hydratase/genetics , Aconitate Hydratase/metabolism , Animals , Citric Acid/metabolism , DNA (Cytosine-5-)-Methyltransferase 1 , DNA (Cytosine-5-)-Methyltransferases/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation , Embryo, Mammalian/enzymology , Embryo, Mammalian/metabolism , Embryo, Mammalian/ultrastructure , Female , Gene Expression Regulation, Developmental , Male , Mice, 129 Strain , Microscopy, Electron, Transmission , Mitochondria/enzymology , Mitochondria/ultrastructure , Mutation , Placenta/enzymology , Placenta/ultrastructure , Placenta Diseases/metabolism , Placenta Diseases/pathology , Placenta Diseases/physiopathology , Pregnancy , Triglycerides/biosynthesis
11.
Am J Transplant ; 15(2): 381-94, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25612645

ABSTRACT

We describe a new preservation modality combining machine perfusion (MP) at subnormothermic conditions(21 °C) with a new hemoglobin-based oxygen carrier (HBOC) solution. MP (n=6) was compared to cold static preservation (CSP; n=6) in porcine orthotopic liver transplants after 9 h of cold ischemia and 5-day follow-up. Recipients' peripheral blood, serial liver biopsies, preservation solutions and bile specimens were collected before, during and after liver preservation. Clinical laboratorial and histological analyses were performed in addition to mitochondrial functional assays, transcriptomic, metabolomic and inflammatory inflammatory mediator analyses. Compared with CSP, MP animals had: (1) significantly higher survival (100%vs. 33%; p<0.05); (2) superior graft function (p<0.05);(3) eight times higher hepatic O2 delivery than O2 consumption (0.78 mL O2/g/h vs. 0.096 mL O2/g/h) during MP; and (4) significantly greater bile production (MP=378.5 ± 179.7; CS=151.6 ± 116.85). MP downregulated interferon (IFN)-α and IFN-γ in liver tissue. MP allografts cleared lactate, produced urea, sustained gluconeogenesis and produced hydrophilic bile after reperfusion. Enhanced oxygenation under subnormothermic conditions triggers regenerative and cell protective responses resulting in improved allograft function. MP at 21 °C with the HBOC solution significantly improves liver preservation compared to CSP.


Subject(s)
Cold Temperature , Liver/physiology , Organ Preservation Solutions , Organ Preservation/methods , Oxygen , Perfusion/instrumentation , Perfusion/methods , Allografts , Animals , Gene Expression Profiling , Graft Survival/physiology , Hemoglobins , Liver Transplantation/methods , Metabolomics , Sus scrofa
12.
Mucosal Immunol ; 8(4): 896-905, 2015 Jul.
Article in English | MEDLINE | ID: mdl-25492474

ABSTRACT

Neutrophil elastase (NE) and cathepsin G (CG) contribute to intracellular microbial killing but, if left unchecked and released extracellularly, promote tissue damage. Conversely, mechanisms that constrain neutrophil serine protease activity protect against tissue damage but may have the untoward effect of disabling the microbial killing arsenal. The host elaborates thrombospondin-1 (TSP-1), a matricellular protein released during inflammation, but its role during neutrophil activation following microbial pathogen challenge remains uncertain. Mice deficient in TSP-1 (thbs1(-/-)) showed enhanced lung bacterial clearance, reduced splenic dissemination, and increased survival compared with wild-type (WT) controls during intrapulmonary Klebsiella pneumoniae infection. More effective pathogen containment was associated with reduced burden of inflammation in thbs1(-/-) mouse lungs compared with WT controls. Lung NE activity was increased in thbs1(-/-) mice following K. pneumoniae challenge, and thbs1(-/-) neutrophils showed enhanced intracellular microbial killing that was abrogated with recombinant TSP-1 administration or WT serum. Thbs1(-/-) neutrophils exhibited enhanced NE and CG enzymatic activity, and a peptide corresponding to amino-acid residues 793-801 within the type-III repeat domain of TSP-1 bridled neutrophil proteolytic function and microbial killing in vitro. Thus, TSP-1 restrains proteolytic action during neutrophilic inflammation elicited by K. pneumoniae, providing a mechanism that may regulate the microbial killing arsenal.


Subject(s)
Immunity, Innate , Klebsiella Infections/immunology , Klebsiella Infections/metabolism , Klebsiella pneumoniae/immunology , Neutrophils/immunology , Neutrophils/metabolism , Serine Proteases/metabolism , Thrombospondin 1/metabolism , Animals , Cathepsin G/metabolism , Cytotoxicity, Immunologic , Disease Models, Animal , Klebsiella Infections/mortality , Klebsiella Infections/pathology , Leukocyte Elastase/metabolism , Lung/immunology , Lung/metabolism , Lung/microbiology , Lung/pathology , Mice , Mice, Knockout , Neutrophils/drug effects , Peptides/pharmacology , Recombinant Proteins/pharmacology , Respiratory Burst/genetics , Respiratory Burst/immunology , Spleen/immunology , Spleen/metabolism , Spleen/microbiology , Thrombospondin 1/chemistry , Thrombospondin 1/deficiency , Thrombospondin 1/genetics , Thrombospondin 1/pharmacology
13.
Br J Cancer ; 111(12): 2342-50, 2014 Dec 09.
Article in English | MEDLINE | ID: mdl-25314052

ABSTRACT

BACKGROUND: Metastatic outgrowth in breast cancer can occur years after a seeming cure. Existing model systems of dormancy are limited as they do not recapitulate human metastatic dormancy without exogenous manipulations and are unable to query early events of micrometastases. METHODS: Here, we describe a human ex vivo hepatic microphysiologic system. The system is established with fresh human hepatocytes and non-parenchymal cells (NPCs) creating a microenvironment into which breast cancer cells (MCF7 and MDA-MB-231) are added. RESULTS: The hepatic tissue maintains function through 15 days as verified by liver-specific protein production and drug metabolism assays. The NPCs form an integral part of the hepatic niche, demonstrated within the system through their participation in differential signalling cascades and cancer cell outcomes. Breast cancer cells intercalate into the hepatic niche without interfering with hepatocyte function. Examination of cancer cells demonstrated that a significant subset enter a quiescent state of dormancy as shown by lack of cell cycling (EdU(-) or Ki67(-)). The presence of NPCs altered the cancer cell fraction entering quiescence, and lead to differential cytokine profiles in the microenvironment effluent. CONCLUSIONS: These findings establish the liver microphysiologic system as a relevant model for the study of breast cancer metastases and entry into dormancy.


Subject(s)
Breast Neoplasms/pathology , Liver Neoplasms/secondary , Cell Line, Tumor , Female , Humans , Liver Neoplasms/metabolism , Neoplasm Metastasis , Transfection , Tumor Microenvironment
14.
Mucosal Immunol ; 7(2): 440-8, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24045574

ABSTRACT

Mononuclear phagocyte recognition of apoptotic cells triggering suppressive cytokine signaling is a key event in inflammation resolution from injury. Mice deficient in thrombospondin (TSP)-1 (thbs1⁻/⁻), an extracellular matrix glycoprotein that bridges cell-cell interactions, are prone to lipopolysaccharide-induced lung injury and show defective macrophage interleukin (IL)-10 production during the resolution phase of inflammation. Reconstitution of IL-10 rescues thbs1⁻/⁻ mice from persistent neutrophilic lung inflammation and injury and thbs1⁻/⁻ alveolar macrophages show defective IL-10 production following intratracheal instillation of apoptotic neutrophils despite intact efferocytosis. Following co-culture with apoptotic neutrophils, thbs1⁻/⁻ macrophages show a selective defect in IL-10 production, whereas prostaglandin E2 and transforming growth factor beta 1 responses remain intact. Full macrophage IL-10 responses require the engagement of TSP-1 structural repeat 2 domain and the macrophage scavenger receptor CD36 LIMP-II Emp sequence homology (CLESH) domain in vitro. Although TSP-1 is not essential for macrophage engulfment of apoptotic neutrophils in vivo, TSP-1 aids in the curtailment of inflammatory responses during the resolution phase of injury in the lungs by providing a means by which apoptotic cells are recognized and trigger optimal IL-10 production by macrophages.


Subject(s)
Interleukin-10/biosynthesis , Lung Injury/immunology , Lung Injury/metabolism , Macrophages/immunology , Macrophages/metabolism , Thrombospondin 1/metabolism , Animals , Apoptosis/immunology , CD36 Antigens/genetics , CD36 Antigens/metabolism , Dinoprostone/deficiency , Disease Models, Animal , Lipopolysaccharides/adverse effects , Lung Injury/chemically induced , Lung Injury/genetics , Lung Injury/pathology , Mice , Mice, Knockout , Neutrophils/immunology , Neutrophils/metabolism , Pneumonia/genetics , Pneumonia/immunology , Pneumonia/metabolism , Pneumonia/pathology , Protein Interaction Domains and Motifs/genetics , Signal Transduction , Thrombospondin 1/chemistry , Thrombospondin 1/genetics , Transforming Growth Factor beta1/metabolism
15.
Cell Death Dis ; 4: e670, 2013 Jun 13.
Article in English | MEDLINE | ID: mdl-23764851

ABSTRACT

The c-Myc (Myc) oncoprotein regulates numerous phenotypes pertaining to cell mass, survival and metabolism. Glycolysis, oxidative phosphorylation (OXPHOS) and mitochondrial biogenesis are positively controlled by Myc, with myc-/- rat fibroblasts displaying atrophic mitochondria, structural and functional defects in electron transport chain (ETC) components, compromised OXPHOS and ATP depletion. However, while Myc influences mitochondrial structure and function, it is not clear to what extent the reverse is true. To test this, we induced a state of mitochondrial hyper-fission in rat fibroblasts by de-regulating Drp1, a dynamin-like GTPase that participates in the terminal fission process. The mitochondria from these cells showed reduced mass and interconnectivity, a paucity of cristae, a marked reduction in OXPHOS and structural and functional defects in ETC Complexes I and V. High rates of abortive mitochondrial fusion were observed, likely reflecting ongoing, but ultimately futile, attempts to normalize mitochondrial mass. Cellular consequences included reduction of cell volume, ATP depletion and activation of AMP-dependent protein kinase. In response to Myc deregulation, apoptosis was significantly impaired both in the absence and presence of serum, although this could be reversed by increasing ATP levels by pharmacologic means. The current work demonstrates that enforced mitochondrial fission closely recapitulates a state of Myc deficiency and that mitochondrial integrity and function can affect Myc-regulated cellular behaviors. The low intracellular ATP levels that are frequently seen in some tumors as a result of inadequate vascular perfusion could favor tumor survival by countering the pro-apoptotic tendencies of Myc overexpression.


Subject(s)
Dynamins/physiology , Mitochondrial Dynamics , Proto-Oncogene Proteins c-myc/biosynthesis , Adenosine Triphosphate/metabolism , Aminoimidazole Carboxamide/analogs & derivatives , Animals , Apoptosis , Cell Line , Cell Proliferation , Cell Survival , Electron Transport Chain Complex Proteins/metabolism , Humans , Oxidative Phosphorylation , Phenotype , Proto-Oncogene Proteins c-myc/genetics , Rats , Reactive Oxygen Species/metabolism , Receptors, Estrogen/biosynthesis , Receptors, Estrogen/genetics , Recombinant Fusion Proteins/biosynthesis , Recombinant Fusion Proteins/genetics , Ribonucleotides/physiology
16.
Clin Exp Immunol ; 173(3): 473-9, 2013 Sep.
Article in English | MEDLINE | ID: mdl-23617623

ABSTRACT

B cells perform various immunological functions that include production of antibody, presentation of antigens, secretion of multiple cytokines and regulation of immune responses mainly via their secretion of interleukin (IL)-10. While the liver is regarded both as an important immune organ and a tolerogenic environment, little is known about the functional biology of hepatic B cells. In this study we demonstrate that, following lipopolysaccharide (LPS) stimulation in vivo, normal mouse hepatic B cells rapidly increase their surface expression of CD39, CD40, CD80 and CD86, and produce significantly elevated levels of proinflammatory interferon (IFN)-γ, IL-6 and tumour necrosis factor (TNF)-α compared with splenic B cells. Moreover, LPS-activated hepatic B cells produce very low levels of IL-10 compared with activated splenic B cells that produce comparatively high levels of this immunosuppressive cytokine. Splenic, but not hepatic, B cells inhibited the activation of liver conventional myeloid dendritic cells (mDCs). Furthermore, compared with the spleen, the liver exhibited significantly smaller proportions of B1a and marginal zone-like B cells, which have been shown to produce IL-10 upon LPS stimulation. These data suggest that, unlike in the spleen, IL-10-producing regulatory B cells in the liver are not a prominent cell type. Consistent with this, when compared with liver conventional mDCs from B cell-deficient mice, those from B cell-competent wild-type mice displayed enhanced expression of the cell surface co-stimulatory molecule CD86, greater production of proinflammatory cytokines (IFN-γ, IL-6, IL-12p40) and reduced secretion of IL-10. These findings suggest that hepatic B cells have the potential to initiate rather than regulate inflammatory responses.


Subject(s)
B-Lymphocytes/immunology , B-Lymphocytes/metabolism , Interleukin-10/biosynthesis , Liver/immunology , Lymphoid Tissue/immunology , Toll-Like Receptor 4/metabolism , Animals , Dendritic Cells/immunology , Dendritic Cells/metabolism , Interferon-gamma/biosynthesis , Lipopolysaccharides/immunology , Liver/metabolism , Lymphoid Tissue/metabolism , Male , Mice , Tumor Necrosis Factor-alpha/biosynthesis
17.
Respiration ; 85(2): 160-74, 2013.
Article in English | MEDLINE | ID: mdl-23406723

ABSTRACT

The new Swiss Chronic Obstructive Pulmonary Disease (COPD) Guidelines are based on a previous version, which was published 10 years ago. The Swiss Respiratory Society felt the need to update the previous document due to new knowledge and novel therapeutic developments about this prevalent and important disease. The recommendations and statements are based on the available literature, on other national guidelines and, in particular, on the GOLD (Global Initiative for Chronic Obstructive Lung Disease) report. Our aim is to advise pulmonary physicians, general practitioners and other health care workers on the early detection and diagnosis, prevention, best symptomatic control, and avoidance of COPD as well as its complications and deterioration.


Subject(s)
Pulmonary Disease, Chronic Obstructive/diagnosis , Pulmonary Disease, Chronic Obstructive/therapy , Adrenergic beta-2 Receptor Agonists/therapeutic use , Anti-Bacterial Agents/therapeutic use , Bronchodilator Agents/therapeutic use , Cholinergic Antagonists/therapeutic use , Continuous Positive Airway Pressure , Exercise , Expectorants/therapeutic use , Glucocorticoids/therapeutic use , Humans , Influenza Vaccines , Oximetry , Oxygen Inhalation Therapy , Patient Education as Topic , Phosphodiesterase Inhibitors/therapeutic use , Pneumococcal Vaccines , Pneumonectomy , Pulmonary Disease, Chronic Obstructive/epidemiology , Radiography, Thoracic , Respiratory Function Tests , Respiratory Therapy , Risk Factors , Self Care , Social Support , Surveys and Questionnaires , Tomography, X-Ray Computed , Weight Gain , alpha 1-Antitrypsin/therapeutic use
19.
Mol Hum Reprod ; 18(8): 417-24, 2012 Aug.
Article in English | MEDLINE | ID: mdl-22383544

ABSTRACT

The largest gene cluster of human microRNAs (miRNAs), the chromosome 19 miRNA cluster (C19MC), is exclusively expressed in the placenta and in undifferentiated cells. The precise expression pattern and function of C19MC members are unknown. We sought to profile the relative expression of C19MC miRNAs in primary human trophoblast (PHT) cells and exosomes. Using high-throughput profiling, confirmed by PCR, we found that C19MC miRNAs are among the most abundant miRNAs in term human trophoblasts. Hypoxic stress selectively reduced miR-520c-3p expression at certain time-points with no effect on other C19MC miRNAs. Similarly, differentiation in vitro had a negligible effect on C19MC miRNAs. We found that C19MC miRNAs are the predominant miRNA species expressed in exosomes released from PHT, resembling the profile of trophoblastic cellular miRNA. Predictably, we detected the similar levels of circulating C19MC miRNAs in the serum of healthy pregnant women at term and in women with pregnancies complicated by fetal growth restriction. Our data define the relative expression levels of C19MC miRNAs in trophoblasts and exosomes, and suggest that C19MC miRNAs function in placental-maternal signaling.


Subject(s)
Chromosomes, Human, Pair 19/genetics , Exosomes/metabolism , MicroRNAs/biosynthesis , MicroRNAs/genetics , Trophoblasts/metabolism , Adult , Cell Differentiation , Cells, Cultured , Female , Fetal Growth Retardation/genetics , Humans , MicroRNAs/blood , Placenta/cytology , Pregnancy , Pregnancy Complications/genetics , Pregnancy Trimester, Third
20.
Am J Transplant ; 11(11): 2508-16, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21668631

ABSTRACT

Prostaglandins have been evaluated for their ability to reduce IRI after liver transplantation; however, poor stability, side effects and the inability to show a significant difference in primary endpoint have limited their clinical application. Treprostinil, a prostacyclin (PGI(2) ) analog, has a higher potency and longer elimination half-life than other commercially available PGI(2) analogs. We examined the efficacy of treprostinil to prevent IRI during OLT. OLT was performed in syngeneic Lewis rats after 18 h of cold preservation (4°C) in the UW solution. IRI significantly increased serum ALT and AST levels, neutrophil infiltration, hepatic necrosis and mRNA levels of proinflammatory cytokines post-OLT, while treatment with treprostinil decreased all the parameters. Cold storage of liver grafts significantly reduced ATP levels and treprostinil restored energy levels in liver grafts early postreperfusion. In addition, treprostinil preserved the sinusoidal endothelial cell lining and reduced platelet deposition early post-transplantation compared to placebo. Hepatic tissue blood flow was significantly compromised in the placebo group, whereas treprostinil maintained blood-flow similar to normal levels. Treprostinil protected the liver graft against IRI during OLT. Treprostinil has the potential to serve as a therapeutic option to protect the liver graft against I/R injury in patients undergoing OLT.


Subject(s)
Epoprostenol/analogs & derivatives , Liver Transplantation/physiology , Reperfusion Injury/prevention & control , Adenosine Triphosphate/metabolism , Animals , Cold Ischemia , Epoprostenol/therapeutic use , Interferon-gamma/biosynthesis , Liver Circulation/drug effects , Liver Transplantation/adverse effects , Male , Neutrophil Infiltration/drug effects , Rats , Rats, Inbred Lew , Tumor Necrosis Factor-alpha/biosynthesis
SELECTION OF CITATIONS
SEARCH DETAIL
...