Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Med Chem ; 67(3): 2220-2235, 2024 Feb 08.
Article in English | MEDLINE | ID: mdl-38284169

ABSTRACT

Thymic stromal lymphopoietin (TSLP) is an epithelial-derived pro-inflammatory cytokine involved in the development of asthma and other atopic diseases. We used Bicycle Therapeutics' proprietary phage display platform to identify bicyclic peptides (Bicycles) with high affinity for TSLP, a target that is difficult to drug with conventional small molecules due to the extended protein-protein interactions it forms with both receptors. The hit series was shown to bind to TSLP in a hotspot, that is also used by IL-7Rα. Guided by the first X-ray crystal structure of a small peptide binding to TSLP and the identification of key metabolites, we were able to improve the proteolytic stability of this series in lung S9 fractions without sacrificing binding affinity. This resulted in the potent Bicycle 46 with nanomolar affinity to TSLP (KD = 13 nM), low plasma clearance of 6.4 mL/min/kg, and an effective half-life of 46 min after intravenous dosing to rats.


Subject(s)
Asthma , Thymic Stromal Lymphopoietin , Animals , Rats , Asthma/drug therapy , Bicycling , Cytokines/metabolism , Peptides, Cyclic/chemistry , Peptides, Cyclic/metabolism
2.
Br J Pharmacol ; 178(22): 4440-4451, 2021 11.
Article in English | MEDLINE | ID: mdl-34250588

ABSTRACT

BACKGROUND AND PURPOSE: Human pharmacokinetic studies of lung-targeted drugs are typically limited to measurements of systemic plasma concentrations, which provide no direct information on lung target-site concentrations. We aimed to evaluate lung pharmacokinetics of commonly prescribed drugs by sampling different lung compartments after inhalation and oral administration. EXPERIMENTAL APPROACH: Healthy volunteers received single, sequential doses of either inhaled salbutamol, salmeterol and fluticasone propionate (n = 12), or oral salbutamol and propranolol (n = 6). Each participant underwent bronchoscopies and gave breath samples for analysis of particles in exhaled air at two points after drug administration (1 and 6, 2 and 9, 3 and 12, or 4 and 18 h). Lung samples were taken via bronchosorption, bronchial brush, mucosal biopsy and bronchoalveolar lavage during each bronchoscopy. Blood samples were taken during the 24 h after administration. Pharmacokinetic profiles were generated by combining data from multiple individuals, covering all sample timings. KEY RESULTS: Pharmacokinetic profiles were obtained for each drug in lung epithelial lining fluid, lung tissue and plasma. Inhalation of salbutamol resulted in approximately 100-fold higher concentrations in lung than in plasma. Salmeterol and fluticasone concentration ratios in lung versus plasma were higher still. Bronchosorption- and bronchoalveolar-lavage-generated profiles of inhaled drugs in epithelial lining fluid were comparable. For orally administered drugs, epithelial-lining-fluid concentrations were overestimated in bronchoalveolar-lavage-generated profiles. CONCLUSION AND IMPLICATIONS: Combining pharmacokinetic data derived from several individuals and techniques sampling different lung compartments enabled generation of pharmacokinetic profiles for evaluation of lung targeting after inhaled and oral drug delivery.


Subject(s)
Pharmaceutical Preparations , Albuterol , Fluticasone , Humans , Lung , Salmeterol Xinafoate
3.
J Aerosol Med Pulm Drug Deliv ; 34(4): 231-241, 2021 08.
Article in English | MEDLINE | ID: mdl-33216656

ABSTRACT

Background: The lower respiratory tract of the landrace pig has close anatomical and physiological similarities with that of the human, and hence, for inhalation studies this species is well suited for biopharmaceutical research. Methods: The objective of this study was to evaluate pharmacokinetics in pigs following one dose of Diskus™ Seretide™ forte device, labeled 500/50 fluticasone propionate (FP) and salmeterol xinafoate (SX), respectively. The PreciseInhale™ (PI) instrument was used to actuate the inhaler for in vitro testing and aerosol dosing to pigs. In vitro, the aerosol was characterized with a cascade impactor with respect to mass median aerodynamic diameter, geometric standard deviation, and fine particle dose. In vivo, dry powder inhalation exposure was delivered as a short bolus dose, to anesthetized and mechanically ventilated landrace pigs. In addition to plasma PK, PK assessment of airway epithelial lining fluid (ELF) was used in this study. ELF of the depth of three to fourth airway generation of the right lung was accessed using standard bronchoscopy and a synthetic absorptive matrix. Results and Conclusions: Dry powder inhalation exposures with good consistency and well characterized aerosols to the pig lung were achieved by the use of the PreciseInhale™ instrument. Drug concentrations of ELF for both FP and SX were demonstrated to be four to five orders of magnitude higher than its corresponding systemic plasma drug concentrations. Clinical PK following inhalation of the same dose was used as benchmark, and the clinical study did demonstrate similar plasma PK profiles and drug exposures of both FP and SX as the current pig study. Two factors explain the close similarity of PK (1) similiar physiology between species and (2) the consistency of dosing to animals. To conclude, our study demonstrated the utility and translational potential of conducting PK studies in pigs in the development of inhaled pharmaceuticals.


Subject(s)
Dry Powder Inhalers , Respiration, Artificial , Administration, Inhalation , Animals , Fluticasone , Fluticasone-Salmeterol Drug Combination , Lung , Salmeterol Xinafoate , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...