Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Magn Reson Med ; 61(3): 615-25, 2009 Mar.
Article in English | MEDLINE | ID: mdl-19235262

ABSTRACT

The poor prognosis associated with malignant glioma is largely attributable to its invasiveness and robust angiogenesis. Angiogenesis involves host-tumor interaction and requires in vivo evaluation. Despite their versatility, few studies have used mouse glioma models with perfusion MRI approaches, and generally lack longitudinal study design. Using a micro-MRI system (8.5 Tesla), a novel dual bolus-tracking perfusion MRI strategy was implemented. Using the small molecule contrast agent Magnevist, dynamic contrast enhanced MRI was implemented in the intracranial 4C8 mouse glioma model to determine K(trans) and v(e), indices of tumor vascular permeability and cellularity, respectively. Dynamic susceptibility contrast MRI was subsequently implemented to assess both cerebral blood flow and volume, using the macromolecular superparamagnetic iron oxide, Feridex, which circumvented tumor bolus susceptibility curve distortions from first-pass extravasation. The high-resolution parametric maps obtained over 4 weeks, indicated a progression of tumor vascularization, permeability, and decreased cellularity with tumor growth. In conclusion, a comprehensive array of key parameters were reliably quantified in a longitudinal mouse glioma study. The syngeneic 4C8 intracerebral mouse tumor model has excellent characteristics for studies of glioma angiogenesis. This approach provides a useful platform for noninvasive and highly diagnostic longitudinal investigations of anti-angiogenesis strategies in a relevant orthotopic animal model.


Subject(s)
Brain Neoplasms/blood supply , Brain Neoplasms/physiopathology , Ferric Compounds , Glioma/blood supply , Glioma/physiopathology , Image Enhancement/methods , Magnetic Resonance Imaging/methods , Neovascularization, Pathologic/pathology , Animals , Blood Flow Velocity , Cell Line, Tumor , Contrast Media , Female , Mice , Mice, Inbred C57BL , Molecular Weight , Permeability
SELECTION OF CITATIONS
SEARCH DETAIL
...