Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 55
Filter
1.
J Immunol ; 207(1): 44-54, 2021 07 01.
Article in English | MEDLINE | ID: mdl-34162727

ABSTRACT

Multiple sclerosis (MS) is an idiopathic demyelinating disease in which meningeal inflammation correlates with accelerated disease progression. The study of meningeal inflammation in MS has been limited because of constrained access to MS brain/spinal cord specimens and the lack of experimental models recapitulating progressive MS. Unlike induced models, a spontaneously occurring model would offer a unique opportunity to understand MS immunopathogenesis and provide a compelling framework for translational research. We propose granulomatous meningoencephalomyelitis (GME) as a natural model to study neuropathological aspects of MS. GME is an idiopathic, progressive neuroinflammatory disease of young dogs with a female bias. In the GME cases examined in this study, the meninges displayed focal and disseminated leptomeningeal enhancement on magnetic resonance imaging, which correlated with heavy leptomeningeal lymphocytic infiltration. These leptomeningeal infiltrates resembled tertiary lymphoid organs containing large B cell clusters that included few proliferating Ki67+ cells, plasma cells, follicular dendritic/reticular cells, and germinal center B cell-like cells. These B cell collections were confined in a specialized network of collagen fibers associated with the expression of the lympho-organogenic chemokines CXCL13 and CCL21. Although neuroparenchymal perivascular infiltrates contained B cells, they lacked the immune signature of aggregates in the meningeal compartment. Finally, meningeal B cell accumulation correlated significantly with cortical demyelination reflecting neuropathological similarities to MS. Hence, during chronic neuroinflammation, the meningeal microenvironment sustains B cell accumulation that is accompanied by underlying neuroparenchymal injury, indicating GME as a novel, naturally occurring model to study compartmentalized neuroinflammation and the associated pathology thought to contribute to progressive MS.


Subject(s)
B-Lymphocytes/immunology , Disease Models, Animal , Meninges/immunology , Multiple Sclerosis, Chronic Progressive/immunology , Animals , B-Lymphocytes/pathology , Dogs , Meninges/pathology , Multiple Sclerosis, Chronic Progressive/pathology
2.
J Alzheimers Dis ; 73(2): 529-541, 2020.
Article in English | MEDLINE | ID: mdl-31796679

ABSTRACT

Alzheimer's disease (AD) is one of the most devastating and costly diseases, and prevalence of AD increases with age. Furthermore, females are twice as likely to suffer from AD compared to males. The cessation of reproductive steroid hormone production during menopause is hypothesized to cause this difference. Two rodent AD models, APP21 and APP+PS1, and wild type (WT) rats underwent an ovariectomy or sham surgery. Changes in learning and memory, brain histology, amyloid-ß (Aß) deposition, levels of mRNAs involved in Aß production and clearance, and synaptic and cognitive function were determined. Barnes maze results showed that regardless of ovariectomy status, APP+PS1 rats learned slower and had poor memory retention. Ovariectomy caused learning impairment only in the APP21 rats. High levels of Aß42 and very low levels of Aß40 were observed in the brain cortices of APP+PS1 rats indicating limited endogenous PS1. The APP+PS1 rats had 43-fold greater formic acid soluble Aß42 than Aß40 at 17 months. Furthermore, levels of formic acid soluble Aß42 increased 57-fold in ovariectomized APP+PS1 rats between 12 and 17 months of age. The mRNA encoding Grin1 significantly decreased due to ovariectomy whereas levels of Bace1, Chat, and Prkcb all decreased with age. The expression levels of mRNAs involved in Aß degradation and AßPP cleavage (Neprilysin, Ide, Adam9, and Psenen) were found to be highly correlated with each other as well as hippocampal Aß deposition. Taken together, these results indicate that both ovariectomy and genotype influence AD markers in a complex manner.


Subject(s)
Alzheimer Disease/psychology , Cognition , Ovariectomy/psychology , Aging/psychology , Alzheimer Disease/genetics , Amyloid beta-Peptides/metabolism , Amyloid beta-Protein Precursor/genetics , Animals , Biomarkers , Female , Gonadal Steroid Hormones/metabolism , Male , Maze Learning , Memory , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Peptide Fragments/metabolism , Rats , Rats, Transgenic , Receptors, N-Methyl-D-Aspartate/metabolism
3.
J Neurosci Res ; 98(5): 869-887, 2020 05.
Article in English | MEDLINE | ID: mdl-31797408

ABSTRACT

Inter-alpha inhibitor proteins (IAIPs) are naturally occurring immunomodulatory molecules found in most tissues. We have reported ontogenic changes in the expression of IAIPs in brain during development in sheep and abundant expression of IAIPs in fetal and neonatal rodent brain in a variety of cellular types and brain regions. Although a few studies identified bikunin, light chain of IAIPs, in adult human brain, the presence of the complete endogenous IAIP protein complex has not been reported in human brain. In this study, we examined the immunohistochemical expression of endogenous IAIPs in human cerebral cortex from early in development through the neonatal period and in adults using well-preserved postmortem brains. We examined total, nuclear, and cytoplasmic staining of endogenous IAIPs and their expression in neurofilament light polypeptide-positive neurons and glial fibrillary acidic protein (GFAP)-positive astrocytes. IAIPs were ubiquitously detected for the first time in cerebral cortical cells at 24-26, 27-28, 29-36, and 37-40 weeks of gestation and in adults. Quantitative analyses revealed that IAIPs were predominately localized in the nucleus in all age groups, but cytoplasmic IAIP expression was more abundant in adult than in the younger ages. Immunoreactivity of IAIPs was expressed in neurons and astrocytes in all age groups. In addition, IAIP co-localization with GFAP-positive astrocytes was more abundant in adults than in the developing brain. We conclude that IAIPs exhibit ubiquitous expression, and co-localize with neurons and astrocytes in the developing and adult human brain suggesting a potential role for IAIPs in development and endogenous neuroprotection.


Subject(s)
Alpha-Globulins/metabolism , Brain/metabolism , Neurons/metabolism , Adult , Aged , Aged, 80 and over , Aging/metabolism , Astrocytes/metabolism , Female , Fetus/metabolism , Gestational Age , Humans , Infant , Male , Middle Aged
4.
Exp Neurol ; 317: 244-259, 2019 07.
Article in English | MEDLINE | ID: mdl-30914159

ABSTRACT

Hypoxic-ischemic (HI) brain injury is one of the most common neurological problems occurring in the perinatal period. Hypothermia is the only approved intervention for neonatal HI encephalopathy. However, this treatment is only partially protective, has a narrow therapeutic time window after birth and only can be used to treat full-term infants. Consequently, additional therapies are critically needed. Inflammation is an important contributing factor to the evolution of HI brain injury in neonates. Inter-alpha Inhibitor Proteins (IAIPs) are immunomodulatory proteins with anti-inflammatory properties. We have previously shown that IAIPs reduce neuronal cell death and improve behavioral outcomes when given after carotid artery ligation, but before hypoxia in male neonatal rats. The objective of the current study was to investigate the neuroprotective effects of treatment with IAIPs given immediately or 6 h after HI in both male and female neonatal rats. HI was induced with the Rice-Vannucci method in postnatal (P) day 7 rats. After ligation of the right common carotid artery, P7 rats were exposed to 90 min of hypoxia (8% oxygen). Human plasma-derived IAIPs or placebo (phosphate buffered saline) was given at zero, 24, and 48 h after HI. Brains were perfused, weighed and fixed 72 h after HI at P10. In a second, delayed treatment group, the same procedure was followed except that IAIPs or placebo were given at 6, 24 and 48 h after HI. Separate sham-operated, placebo-treated groups were exposed to identical protocols but were not exposed to carotid artery ligation and remained in room air. Rat sex was recorded. The effects of IAIPs on HI brain injury were examined using histopathological scoring and immunohistochemical analyses of the brain and by using infarct volume measurements on frozen tissue of the entire brain hemispheres ipsilateral and contralateral to HI injury. IAIPs given immediately after HI improved (P < 0.050) histopathological brain injury across and within the cingulate, caudate/putamen, thalamus, hippocampus and parietal cortex in males, but not in females. In contrast, IAIPs given immediately after HI reduced (P < 0.050) infarct volumes of the hemispheres ipsilateral to HI injury in similarly both the males and females. Treatment with IAIPs also resulted in higher (P < 0.050) brain weights compared with the placebo-treated HI group, reduced (P < 0.050) neuronal and non-neuronal cell death in the cortex and total hemisphere, and also increased the total area of oligodendrocytes determined by CNPase in the ipsilateral hemisphere and corpus callosum (P < 0.050) of male, but not female subjects exposed to HI. Delayed treatment with IAIPs 6 h after HI did not improve histopathological brain injury in males or females, but resulted in higher (P < 0.050) brain weights compared with the placebo-treated HI males. Therefore, treatment with IAIPs immediately after HI improved brain weights and reduced neuropathological brain injury and cell death in male rats, and reduced infarct volume in both male and female neonatal rats. We conclude that IAIPs exert neuroprotective effects after exposure to HI in neonatal rats and may exhibit some sex-related differential effects.


Subject(s)
Alpha-Globulins/pharmacology , Hypoxia-Ischemia, Brain/pathology , Neuroprotective Agents/pharmacology , Animals , Animals, Newborn , Brain/drug effects , Brain/pathology , Female , Humans , Male , Rats , Rats, Wistar
5.
Appl Immunohistochem Mol Morphol ; 27(7): 543-548, 2019 08.
Article in English | MEDLINE | ID: mdl-29189256

ABSTRACT

BACKGROUND: Gastrointestinal (GI) symptoms are common in Parkinson disease (PD), often preceding neurological manifestations; however, early diagnostic utility of GI biopsies remains controversial. Studies suggest aberrant deposition of alpha-synuclein (α-syn) follows step-wise progression in central nervous system though histologic interpretation of normal and aberrant staining patterns have shown variable results. This study examines whether GI α-syn mRNA expression combined with standard α-syn immunohistochemical staining enhance the role of GI biopsy in PD. MATERIALS AND METHODS: Four groups were examined, including pediatric (21) and adult control patients (18), PD clinic patients (17), and pathologically confirmed PD cases from hospital archives (16). Enteric nervous system α-syn staining was evaluated by immunohistochemistry in 33 PD and 39 controls. α-Syn mRNA levels were compared between patient groups using quantitative polymerase chain reaction and stomach and colon levels in PD. RESULTS: PD patients had Lewy bodies (LB) and diffuse neuronal α-syn staining. GI tissues from elderly controls, children, and young adults exhibited diffuse positivity. LB were limited to PD. Myenteric plexus immunoreactivity varied in different regions. Widespread staining was noted within stomach and colon. Immunoreactivity was present within esophagus, appendix, and small bowel. α-Syn mRNA expression was highest in PD; however, levels varied between proximal and distal GI tract. CONCLUSIONS: α-Syn is normally present within young and elderly enteric nervous system; furthermore, while α-syn mRNA is always detectable, levels are highest and most variable in PD. This suggests that enteric α-syn may be altered in neurodegenerative disease. The presence of LB in the GI tract, not solely α-syn expression, may prove useful, distinguishing neurodegenerative disease patients from normal controls.


Subject(s)
Enteric Nervous System , Gastrointestinal Tract , Gene Expression Regulation , Parkinson Disease , alpha-Synuclein/biosynthesis , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Enteric Nervous System/metabolism , Enteric Nervous System/pathology , Female , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology , Humans , Male , Middle Aged , Parkinson Disease/metabolism , Parkinson Disease/pathology
6.
Exp Neurol ; 311: 1-14, 2019 01.
Article in English | MEDLINE | ID: mdl-30217406

ABSTRACT

Inflammation contributes to neonatal brain injury. Pro-inflammatory cytokines represent key inflammatory meditators in neonatal hypoxic-ischemic (HI) brain injury. The high mobility group box-1 (HMGB1) protein is a nuclear protein with pro-inflammatory cytokine properties when it is translocated from the nucleus and released extracellularly after stroke in adult rodents. We have previously shown that HMGB1 is translocated from the nucleus to cytosolic compartment after ischemic brain injury in fetal sheep. In the current study, we utilized the Rice-Vannucci model to investigate the time course of HMGB1 translocation and release after HI injury in neonatal rats. HMGB1 was located in cellular nuclei of brains from sham control rats. Nuclear to cytoplasmic translocation of HMGB1 was detected in the ipsilateral-HI hemisphere as early as zero h after HI, and released extracellularly as early as 6 h after HI. Immunohistochemical double staining detected HMGB1 translocation mainly in neurons along with release from apoptotic cells after HI. Serum HMGB1 increased at 3 h and decreased by 24 h after HI. In addition, rat brains exposed to hypoxic injury alone also exhibited time dependent HMGB1 translocation at 3, 12 and 48 h after hypoxia. Consequently, HMGB1 responds similarly after HI injury in the brains of neonatal and adult subjects. We conclude that HMGB1 is sensitive early indicator of neonatal HI and hypoxic brain injury.


Subject(s)
Brain/metabolism , HMGB1 Protein/metabolism , Hypoxia-Ischemia, Brain/metabolism , Neurons/metabolism , Animals , Animals, Newborn , Biomarkers/metabolism , Brain/pathology , Female , HMGB1 Protein/analysis , Hypoxia-Ischemia, Brain/pathology , Neurons/chemistry , Pregnancy , Rats , Rats, Wistar
7.
Haematologica ; 104(4): 678-689, 2019 04.
Article in English | MEDLINE | ID: mdl-30409795

ABSTRACT

The current paradigm in the field of mammalian iron biology states that body iron levels are determined by dietary iron absorption, not by iron excretion. Iron absorption is a highly regulated process influenced by iron levels and other factors. Iron excretion is believed to occur at a basal rate irrespective of iron levels and is associated with processes such as turnover of intestinal epithelium, blood loss, and exfoliation of dead skin. Here we explore iron excretion in a mouse model of iron excess due to inherited transferrin deficiency. Iron excess in this model is attributed to impaired regulation of iron absorption leading to excessive dietary iron uptake. Pharmacological correction of transferrin deficiency not only normalized iron absorption rates and halted progression of iron excess but also reversed body iron excess. Transferrin treatment did not alter the half-life of 59Fe in mutant mice. 59Fe-based studies indicated that most iron was excreted via the gastrointestinal tract and suggested that iron-loaded mutant mice had increased rates of iron excretion. Direct measurement of urinary iron levels agreed with 59Fe-based predictions that urinary iron levels were increased in untreated mutant mice. Fecal ferritin levels were also increased in mutant mice relative to wild-type mice. Overall, these data suggest that mice have a significant capacity for iron excretion. We propose that further investigation into iron excretion is warranted in this and other models of perturbed iron homeostasis, as pharmacological targeting of iron excretion may represent a novel means of treatment for diseases of iron excess.


Subject(s)
Gastrointestinal Tract , Genetic Diseases, Inborn , Iron Overload , Iron/metabolism , Animals , Disease Models, Animal , Ferritins/genetics , Ferritins/metabolism , Gastrointestinal Tract/metabolism , Gastrointestinal Tract/pathology , Genetic Diseases, Inborn/genetics , Genetic Diseases, Inborn/metabolism , Genetic Diseases, Inborn/pathology , Iron Overload/genetics , Iron Overload/metabolism , Iron Overload/pathology , Mice , Mice, Mutant Strains
8.
Fluids Barriers CNS ; 15(1): 34, 2018 Dec 12.
Article in English | MEDLINE | ID: mdl-30541599

ABSTRACT

BACKGROUND: The roles of the choroid plexus (CP) and cerebrospinal fluid (CSF) production have drawn increasing attention in Alzheimer's disease (AD) research. Specifically, studies document markedly decreased CSF production and turnover in moderate-to-severe AD. Moreover, reduced CP function and CSF turnover lead to impaired clearance of toxic metabolites, likely promote neuroinflammation, and may facilitate neuronal death during AD progression. We analyzed CP gene expression in AD compared with control subjects, specifically considering those genes involved with CSF production and CP structural integrity. METHODS: The Brown-Merck Gene Expression Omnibus (GEO) database (CP transcripts) was mined to examine changes in gene expression in AD compared to controls with a focus on assorted genes thought to play a role in CSF production. Specifically, genes coding for ion transporters in CP epithelium (CPE) and associated enzymes like Na-K-ATPase and carbonic anhydrase, aquaporins, mitochondrial transporters/enzymes, blood-cerebrospinal fluid barrier (BCSFB) stability proteins, and pro-inflammatory mediators were selected for investigation. Data were analyzed using t test p-value and fold-change analysis conducted by the GEO2R feature of the GEO database. RESULTS: Significant expression changes for several genes were observed in AD CP. These included disruptions to ion transporters (e.g., the solute carrier gene SLC4A5, p = 0.004) and associated enzyme expressions (e.g., carbonic anhydrase CA4, p = 0.0001), along with decreased expression of genes involved in BCSFB integrity (e.g., claudin CLDN5, p = 0.039) and mitochondrial ATP synthesis (e.g., adenosine triphosphate ATP5L, p = 0.0004). Together all changes point to disrupted solute transport at the blood-CSF interface in AD. Increased expression of pro-inflammatory (e.g., interleukin IL1RL1, p = 0.00001) and potential neurodegenerative genes (e.g., amyloid precursor APBA3, p = 0.002) also implicate disturbed CP function. CONCLUSIONS: Because the altered expression of numerous transcripts in AD-CP help explain decreased CSF production in AD, these findings represent a first step towards identifying novel therapeutic targets in AD.


Subject(s)
Alzheimer Disease/cerebrospinal fluid , Alzheimer Disease/genetics , Brain/metabolism , Choroid Plexus/metabolism , Alzheimer Disease/metabolism , Blood-Brain Barrier/metabolism , Databases, Factual , Gene Expression , Gene Expression Profiling , Homeostasis , Humans , Ion Transport
9.
Front Aging Neurosci ; 10: 245, 2018.
Article in English | MEDLINE | ID: mdl-30186149

ABSTRACT

Background: The pathophysiology underlying altered blood-cerebrospinal fluid barrier (BCSFB) function in Alzheimer's disease (AD) is unknown but may relate to endothelial cell activation and cytokine mediated inflammation. Methods: Cerebrospinal fluid (CSF) and peripheral blood were concurrently collected from cognitively healthy controls (N = 21) and patients with mild cognitive impairment (MCI) (N = 8) or AD (N = 11). The paired serum and CSF samples were assayed for a panel of cytokines, chemokines, and related trophic factors using multiplex ELISAs. Dominance analysis models were conducted to determine the relative importance of the inflammatory factors in relationship to BCSFB permeability, as measured by CSF/serum ratios for urea, creatinine, and albumin. Results: BCSFB disruption to urea, a small molecule distributed by passive diffusion, had a full model coefficient of determination (r2) = 0.35, and large standardized dominance weights (>0.1) for monocyte chemoattractant protein-1, interleukin (IL)-15, IL-1rα, and IL-2 in serum. BCSFB disruption to creatinine, a larger molecule governed by active transport, had a full model r2 = 0.78, and large standardized dominance weights for monocyte inhibitor protein-1b in CSF and tumor necrosis factor-α in serum. BCSFB disruption to albumin, a much larger molecule, had a full model r2 = 0.62, and large standardized dominance weights for IL-17a, interferon-gamma, IL-2, and VEGF in CSF, as well IL-4 in serum. Conclusions: Inflammatory proteins have been widely documented in the AD brain. The results of the current study suggest that changes in BCSFB function resulting in altered permeability and transport are related to expression of specific inflammatory proteins, and that the shifting distribution of these proteins from serum to CSF in AD and MCI is correlated with more severe perturbations in BCSFB function.

10.
Fluids Barriers CNS ; 15(1): 18, 2018 May 31.
Article in English | MEDLINE | ID: mdl-29848382

ABSTRACT

BACKGROUND: In Alzheimer's disease, there are striking changes in CSF composition that relate to altered choroid plexus (CP) function. Studying CP tissue gene expression at the blood-cerebrospinal fluid barrier could provide further insight into the epithelial and stromal responses to neurodegenerative disease states. METHODS: Transcriptome-wide Affymetrix microarrays were used to determine disease-related changes in gene expression in human CP. RNA from post-mortem samples of the entire lateral ventricular choroid plexus was extracted from 6 healthy controls (Ctrl), 7 patients with advanced (Braak and Braak stage III-VI) Alzheimer's disease (AD), 4 with frontotemporal dementia (FTD) and 3 with Huntington's disease (HuD). Statistics and agglomerative clustering were accomplished with MathWorks, MatLab; and gene set annotations by comparing input sets to GeneGo ( http://www.genego.com ) and Ingenuity ( http://www.ingenuity.com ) pathway sets. Bonferroni-corrected hypergeometric p-values of < 0.1 were considered a significant overlap between sets. RESULTS: Pronounced differences in gene expression occurred in CP of advanced AD patients vs. Ctrls. Metabolic and immune-related pathways including acute phase response, cytokine, cell adhesion, interferons, and JAK-STAT as well as mTOR were significantly enriched among the genes upregulated. Methionine degradation, claudin-5 and protein translation genes were downregulated. Many gene expression changes in AD patients were observed in FTD and HuD (e.g., claudin-5, tight junction downregulation), but there were significant differences between the disease groups. In AD and HuD (but not FTD), several neuroimmune-modulating interferons were significantly enriched (e.g., in AD: IFI-TM1, IFN-AR1, IFN-AR2, and IFN-GR2). AD-associated expression changes, but not those in HuD and FTD, were enriched for upregulation of VEGF signaling and immune response proteins, e.g., interleukins. HuD and FTD patients distinctively displayed upregulated cadherin-mediated adhesion. CONCLUSIONS: Our transcript data for human CP tissue provides genomic and mechanistic insight for differential expression in AD vs. FTD vs. HuD for stromal as well as epithelial components. These choroidal transcriptome characterizations elucidate immune activation, tissue functional resiliency, and CSF metabolic homeostasis. The BCSFB undergoes harmful, but also important functional and adaptive changes in neurodegenerative diseases; accordingly, the enriched JAK-STAT and mTOR pathways, respectively, likely help the CP in adaptive transcription and epithelial repair and/or replacement when harmed by neurodegeneration pathophysiology. We anticipate that these precise CP translational data will facilitate pharmacologic/transgenic therapies to alleviate dementia.


Subject(s)
Alzheimer Disease/metabolism , Choroid Plexus/metabolism , Frontotemporal Dementia/metabolism , Huntington Disease/metabolism , Adult , Aged , Aged, 80 and over , Female , Gene Expression , Homeostasis/physiology , Humans , Male , Microarray Analysis , Middle Aged , Transcriptome
11.
Am J Primatol ; 80(10): e22875, 2018 10.
Article in English | MEDLINE | ID: mdl-29797339

ABSTRACT

Oxytocin (OT) and arginine-vasopressin (AVP) are involved in the regulation of complex social behaviors across a wide range of taxa. Despite this, little is known about the neuroanatomy of the OT and AVP systems in most non-human primates, and less in humans. The effects of OT and AVP on social behavior, including aggression, mating, and parental behavior, may be mediated primarily by the extensive connections of OT- and AVP-producing neurons located in the hypothalamus with the basal forebrain and amygdala, as well as with the hypothalamus itself. However, OT and AVP also influence social cognition, including effects on social recognition, cooperation, communication, and in-group altruism, which suggests connectivity with cortical structures. While OT and AVP V1a receptors have been demonstrated in the cortex of rodents and primates, and intranasal administration of OT and AVP has been shown to modulate cortical activity, there is to date little evidence that OT-and AVP-containing neurons project into the cortex. Here, we demonstrate the existence of OT- and AVP-containing fibers in cortical regions relevant to social cognition using immunohistochemistry in humans, chimpanzees, and rhesus macaques. OT-immunoreactive fibers were found in the straight gyrus of the orbitofrontal cortex as well as the anterior cingulate gyrus in human and chimpanzee brains, while no OT-immunoreactive fibers were found in macaque cortex. AVP-immunoreactive fibers were observed in the anterior cingulate gyrus in all species, as well as in the insular cortex in humans, and in a more restricted distribution in chimpanzees. This is the first report of OT and AVP fibers in the cortex in human and non-human primates. Our findings provide a potential mechanism by which OT and AVP might exert effects on brain regions far from their production site in the hypothalamus, as well as potential species differences in the behavioral functions of these target regions.


Subject(s)
Arginine Vasopressin/metabolism , Cerebral Cortex/metabolism , Macaca mulatta/metabolism , Oxytocin/metabolism , Adult , Animals , Female , Humans , Immunohistochemistry , Male , Middle Aged , Pan troglodytes/metabolism , Social Behavior
12.
PLoS One ; 13(4): e0195469, 2018.
Article in English | MEDLINE | ID: mdl-29641600

ABSTRACT

Transgenic rat models of Alzheimer's disease were used to examine differences in memory and brain histology. Double transgenic female rats (APP+PS1) over-expressing human amyloid precursor protein (APP) and presenilin 1 (PS1) and single transgenic rats (APP21) over-expressing human APP were compared with wild type Fischer rats (WT). The Barnes maze assessed learning and memory and showed that both APP21 and APP+PS1 rats made significantly more errors than the WT rats during the acquisition phase, signifying slower learning. Additionally, the APP+PS1 rats made significantly more errors following a retention interval, indicating impaired memory compared to both the APP21 and WT rats. Immunohistochemistry using an antibody against amyloid-ß (Aß) showed extensive and mostly diffuse Aß plaques in the hippocampus and dense plaques that contained tau in the cortex of the brains of the APP+PS1 rats. Furthermore, the APP+PS1 rats also showed vascular changes, including cerebral amyloid angiopathy with extensive Aß deposits in cortical and leptomeningeal blood vessel walls and venous collagenosis. In addition to the Aß accumulation observed in arterial, venous, and capillary walls, APP+PS1 rats also displayed enlarged blood vessels and perivascular space. Overall, the brain histopathology and behavioral assessment showed that the APP+PS1 rats demonstrated behavioral characteristics and vascular changes similar to those commonly observed in patients with Alzheimer's disease.


Subject(s)
Alzheimer Disease/complications , Alzheimer Disease/physiopathology , Amyloid beta-Protein Precursor/genetics , Cerebral Amyloid Angiopathy/complications , Memory , Plaque, Amyloid/complications , Presenilin-1/genetics , Alzheimer Disease/blood , Alzheimer Disease/genetics , Amyloid beta-Peptides/blood , Animals , Disease Models, Animal , Humans , Peptide Fragments/blood , Rats , Rats, Transgenic
13.
Brain Behav Immun ; 67: 24-35, 2018 Jan.
Article in English | MEDLINE | ID: mdl-28780000

ABSTRACT

Perinatal hypoxic-ischemic reperfusion (I/R)-related brain injury is a leading cause of neurologic morbidity and life-long disability in children. Infants exposed to I/R brain injury develop long-term cognitive and behavioral deficits, placing a large burden on parents and society. Therapeutic strategies are currently not available for infants with I/R brain damage, except for hypothermia, which can only be used in full term infants with hypoxic-ischemic encephalopathy (HIE). Moreover, hypothermia is only partially protective. Pro-inflammatory cytokines are key contributors to the pathogenesis of perinatal I/R brain injury. Interleukin-1ß (IL-1ß) is a critical pro-inflammatory cytokine, which has been shown to predict the severity of HIE in infants. We have previously shown that systemic infusions of mouse anti-ovine IL-1ß monoclonal antibody (mAb) into fetal sheep resulted in anti-IL-1ß mAb penetration into brain, reduced I/R-related increases in IL-1ß expression and blood-brain barrier (BBB) dysfunction in fetal brain. The purpose of the current study was to examine the effects of systemic infusions of anti-IL-1ß mAb on short-term I/R-related parenchymal brain injury in the fetus by examining: 1) histopathological changes, 2) apoptosis and caspase-3 activity, 3) neuronal degeneration 4) reactive gliosis and 5) myelin basic protein (MBP) immunohistochemical staining. The study groups included non-ischemic controls, placebo-treated ischemic, and anti-IL-1ß mAb treated ischemic fetal sheep at 127days of gestation. The systemic intravenous infusions of anti-IL-1ß mAb were administered at fifteen minutes and four hours after in utero brain ischemia. The duration of each infusion was two hours. Parenchymal brain injury was evaluated by determining pathological injury scores, ApopTag® positive cells/mm2, caspase-3 activity, Fluoro-Jade B positive cells/mm2, glial fibrillary acidic protein (GFAP) and MBP staining in the brains of fetal sheep 24h after 30min of ischemia. Treatment with anti-IL-1ß mAb reduced (P<0.05) the global pathological injury scores, number of apoptotic positive cells/mm2, and caspase-3 activity after ischemia in fetal sheep. The regional pathological scores and Fluoro-Jade B positive cells/mm2 did not differ between the placebo- and anti-IL-1ß mAb treated ischemic fetal sheep. The percent of the cortical area stained for GFAP was lower (P<0.05) in the placebo ischemic treated than in the non-ischemic group, but did not differ between the placebo- and anti-IL-1ß mAb treated ischemic groups. MBP immunohistochemical expression did not differ among the groups. In conclusion, infusions of anti-IL-1ß mAb attenuate short-term I/R-related histopathological tissue injury, apoptosis, and reduce I/R-related increases in caspase-3 activity in ovine fetal brain. Therefore, systemic infusions of anti-IL-1ß mAb attenuate short-term I/R-related parenchymal brain injury in the fetus.


Subject(s)
Antibodies, Monoclonal/administration & dosage , Brain Ischemia/immunology , Brain/immunology , Interleukin-1beta/immunology , Animals , Antibodies, Neutralizing/administration & dosage , Apoptosis , Brain/pathology , Brain/physiopathology , Brain Ischemia/pathology , Fetus/immunology , Reperfusion Injury/immunology , Reperfusion Injury/pathology , Sheep
14.
Appl Immunohistochem Mol Morphol ; 25(9): 645-650, 2017 Oct.
Article in English | MEDLINE | ID: mdl-27556822

ABSTRACT

Succinate dehydrogenase (SDH) is a key mitochondrial enzyme complex composed of 4 subunits. SDH histochemistry is routinely utilized in the assessment of muscle biopsies to reveal underlying pathology such as subsarcolemmal mitochondrial aggregates. In this study, we evaluated the utility of succinate dehydrogenase B (SDHB) immunohistochemistry (IHC) in 27 muscle biopsies, including 13 mitochondrial myopathies (MMs), 9 inflammatory myopathies, and 5 controls. SDHB IHC was performed on formalin-fixed, paraffin-embedded tissue sections with a mouse monoclonal antibody (Abcam 21A11AE7) in parallel with histochemical SDH stains on a fresh-frozen tissue. In all muscle biopsies, SDHB IHC exhibited granular immunoreactivity and highlighted the dark type 1 and lighter type 2 staining pattern observed by histochemistry. In all cases of MM, SDHB IHC showed subsarcolemmal granular aggregates involving the entire periphery of the fibers that were more distinct than those seen by SDH histochemistry. In 3 extraocular muscle biopsies, SDHB immunoreactive speckles of various sizes were distributed throughout the entire sarcoplasm that were more prominent than those seen on SDH histochemistry. Subsarcolemmal and cytoplasmic granular aggregates seen on SDHB IHC correlated with mitochondrial pathology on electron microscopy. In cases of inflammatory myopathy, there was diffuse sarcoplasmic SDHB immunoreactivity in degenerating fibers, but no evidence of subsarcolemmal aggregates. This study demonstrates that SDHB IHC is highly sensitive and specific in the identification of MM. The automation, reproducibility, and cost efficiency of SDHB IHC offer advantages over the labor-intensive histochemical method requiring frozen sections. As this technique is performed on formalin-fixed, paraffin-embedded tissues, it can be easily applied for retrospective studies.


Subject(s)
Biopsy , Muscle, Skeletal/pathology , Succinate Dehydrogenase/metabolism , Adolescent , Adult , Aged , Aged, 80 and over , Child , Child, Preschool , Female , Humans , Immunohistochemistry , Male , Middle Aged , Young Adult
15.
Article in English | MEDLINE | ID: mdl-27990492

ABSTRACT

Expression of the orphan C2orf40 gene is associated with the aggregation of the neurofibrillary tangle-protein tau in transgenic mice, tumor suppression, the induction of senescence in CNS, and the activation of microglia and peripheral mononuclear leukocytes. This gene also encodes several secreted pro- and anti-inflammatory neuropeptide-like cytokines, suggesting they might be implicated in the inflammatory component(s) of Alzheimer's disease (AD). Accordingly, we evaluated human AD and control brains for expression changes by RT-qPCR, Western blot, and histological changes by immunolabeling. RT-qPCR demonstrated increased cortical gene expression in AD. The molecular form of Ecrg4 detected in cortex was 8-10 kDa, which was shown previously to interact with the innate immunity receptor complex. Immunocytochemical studies showed intensely stained microglia and intravascular blood-borne monocytes within cerebral cortical white matter of AD patients. Staining was diminished within cortical neurons, except for prominent staining in neurofibrillary tangles. Choroid plexuses showed a decreasing trend. These findings support our hypothesis that c2orf40 participates in the neuroimmune response in AD.

16.
Laryngoscope ; 126(12): 2689-2693, 2016 12.
Article in English | MEDLINE | ID: mdl-27271961

ABSTRACT

OBJECTIVES/HYPOTHESIS: The hypoglossal nerve (XII) has been used as a donor nerve in facial and laryngeal reinnervation. The purpose of this study was to investigate the neuromuscular changes that occur within the tongue following partial or complete transection of XII using a canine model. STUDY DESIGN: Histopathological comparison of tongue denervation following two types of XII resection in a canine model. METHODS: Ten adult canines underwent complete unilateral resection of XII or resection of only the medial terminal branch of the hypoglossal nerve (mXII). After 6 months of recovery, tongue specimens were analyzed histopathologically using whole cross-sections. Routine histologic sections were assessed by two neuropathologists blinded to the type of denervation. The cross-sectional area was calculated of both sides of the tongue, and the amount of myosin was quantified morphometrically using immunohistochemistry for myosin (antimyosin heavy chain, fast isotype). Statistical comparison between partial and complete denervation was performed using the Student t test. RESULTS: Six months following XII transection, quantitative measures of the cross-sectional area of the tongue and content of myosin demonstrated severe muscle atrophy on the operated side of the tongue for both groups, compared to the nonoperated side. For partial transection involving only mXII, the degree of atrophy was less severe (P < .05). CONCLUSIONS: This study provides new histological information demonstrating that partial resection of the hypoglossal nerve, sacrificing only the proximal medial branch of the hypoglossal nerve (mXII), results in less severe atrophy of the tongue than complete transection of the entire hypoglossal nerve. LEVEL OF EVIDENCE: NA Laryngoscope, 126:2689-2693, 2016.


Subject(s)
Denervation , Hypoglossal Nerve/surgery , Tongue/pathology , Animals , Atrophy/pathology , Dogs , Female , Models, Animal , Myosins/analysis , Tongue/chemistry , Tongue/innervation
17.
J Neuropathol Exp Neurol ; 75(6): 527-38, 2016 06.
Article in English | MEDLINE | ID: mdl-27151753

ABSTRACT

Inflammation contributes to the evolution of hypoxic-ischemic (HI) brain injury. High-mobility group box-1 (HMGB1) is a nuclear protein that is translocated from the nucleus and released after ischemia in adult rodents and thereby initiates inflammatory responses. However, there is very little information regarding the effects of HI on HMGB1 in immature brains. To investigate the effects of HI on HMGB1 in the term-equivalent fetal brain, ovine fetuses at 127 days gestation were studied after 30 minutes of carotid occlusion. Groups were sham-control and ischemia with 48 hours and ischemia with 72 hours of reperfusion. By immunohistochemistry, HMGB1 was found to be localized primarily in cell nuclei and partially in cytoplasmic compartments in the cerebral cortex of controls. Ischemia increased the area fraction of neuronal cells with cytoplasmic HMGB1 staining, and Western immunoblot revealed that cytosolic HMGB1 expression increased after ischemia (p < 0.05) and decreased in nuclei in ischemic versus the sham-control brains (p < 0.05). These data indicate that HMGB1 translocates from the nuclear to cytosolic compartments after ischemic brain injury in fetal sheep. This translocation may enable the action of HMGB1 as a proinflammatory cytokine that contributes to HI injury in the developing brain.


Subject(s)
Active Transport, Cell Nucleus/physiology , Brain/metabolism , HMGB1 Protein/metabolism , Hypoxia-Ischemia, Brain/metabolism , Animals , Brain/pathology , Cell Nucleus/metabolism , Cell Nucleus/pathology , Cytoplasm/metabolism , Cytoplasm/pathology , Female , Fetus/metabolism , Fetus/pathology , Hypoxia-Ischemia, Brain/pathology , Pregnancy , Random Allocation , Sheep
18.
Neurobiol Aging ; 36(9): 2475-82, 2015 Sep.
Article in English | MEDLINE | ID: mdl-26159621

ABSTRACT

P-glycoprotein (P-gp), part of the blood-brain barrier, limits drug access to the brain and is the target for therapies designed to improve drug penetration. P-gp also extrudes brain amyloid-beta (Aß). Accumulation of Aß is a hallmark of Alzheimer's disease (AD). Aß accumulates in normal aging and in AD primarily due to decreased Aß clearance. This is a preliminary report on the relative protein and messenger RNA expression of P-gp in human brains, ages 20-100 years, including AD subjects. In these preliminary studies, cortical endothelial P-gp expression decreased in AD compared with controls (p < 0.001). Trends in P-gp expression in human aging are similar to aging rats. Microvessel P-gp messenger RNA remained unchanged with aging and AD. Aß plaques were found in 42.8% of normal subjects (54.5% of those older than 50 years). A qualitative analysis showed that P-gp expression is lower than the group mean in subjects older than 75 years but increased if younger. Decreased P-gp expression may be related to Aß plaques in aging and AD. Downregulating P-gp to allow pharmaceuticals into the central nervous system may increase Aß accumulation.


Subject(s)
ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism , Aging/pathology , Alzheimer Disease/pathology , Amyloid/metabolism , Brain/metabolism , Gene Expression Regulation/physiology , ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics , Adult , Age Factors , Aged , Aged, 80 and over , Amyloid beta-Peptides/metabolism , Blood-Brain Barrier/metabolism , Blood-Brain Barrier/pathology , Brain/pathology , Female , Humans , Male , Middle Aged , Peptide Fragments/metabolism , Psychiatric Status Rating Scales , RNA, Messenger/metabolism , Young Adult
19.
Am J Pathol ; 185(8): 2246-58, 2015 Aug.
Article in English | MEDLINE | ID: mdl-26056932

ABSTRACT

The human polyomavirus, JCPyV, is the causative agent of progressive multifocal leukoencephalopathy, a rare demyelinating disease that occurs in the setting of prolonged immunosuppression. After initial asymptomatic infection, the virus establishes lifelong persistence in the kidney and possibly other extraneural sites. In rare instances, the virus traffics to the central nervous system, where oligodendrocytes, astrocytes, and glial precursors are susceptible to lytic infection, resulting in progressive multifocal leukoencephalopathy. The mechanisms by which the virus traffics to the central nervous system from peripheral sites remain unknown. Lactoseries tetrasaccharide c (LSTc), a pentasaccharide containing a terminal α2,6-linked sialic acid, is the major attachment receptor for polyomavirus. In addition to LSTc, type 2 serotonin receptors are required for facilitating virus entry into susceptible cells. We studied the distribution of virus receptors in kidney and brain using lectins, antibodies, and labeled virus. The distribution of LSTc, serotonin receptors, and virus binding sites overlapped in kidney and in the choroid plexus. In brain parenchyma, serotonin receptors were expressed on oligodendrocytes and astrocytes, but these cells were negative for LSTc and did not bind virus. LSTc was instead found on microglia and vascular endothelium, to which virus bound abundantly. Receptor distribution was not changed in the brains of patients with progressive multifocal leukoencephalopathy. Virus infection of oligodendrocytes and astrocytes during disease progression is LSTc independent.


Subject(s)
Brain/metabolism , Choroid Plexus/metabolism , JC Virus , Kidney/metabolism , Polysaccharides/metabolism , Receptors, Serotonin, 5-HT2/metabolism , Receptors, Virus/metabolism , Sialic Acids/metabolism , Adult , Aged , Aged, 80 and over , Astrocytes/metabolism , Female , Humans , Male , Middle Aged , Oligodendroglia/metabolism
20.
Fluids Barriers CNS ; 12(1): 2, 2015.
Article in English | MEDLINE | ID: mdl-25685319

ABSTRACT

BACKGROUND: Normal pressure hydrocephalus (NPH) is most common in the elderly and has a high co-morbidity with Alzheimer's disease (AD) and cerebrovascular disease (CVD). To understand the relationship between NPH, AD and CVD, we investigated how chronic hydrocephalus impacts brain amyloid-beta peptide (Aß) accumulation and vascular pathology in an AD transgenic rodent model. Previously we showed that the altered CSF physiology produced by kaolin-hydrocephalus in older wild-type Sprague-Dawley rats increased Aß and hyperphosphorylated Tau (Silverberg et. al. Brain Res. 2010, 1317:286-296). We postulated that hydrocephalus would similarly affect an AD rat model. METHODS: Thirty-five transgenic rats (tgAPP21) that express high levels of human APP and naturally overproduce Aß40 were used. Six- (n = 7) and twelve-month-old (n = 9) rats had hydrocephalus induced by cisternal kaolin injection. We analyzed Aß burden (Aß40, Aß42 and oligomeric Aß) and vascular integrity (Masson trichrome and Verhoeff-Van Gieson) by immunohistochemistry and chemical staining at 10 weeks (n = 8) and 6 months (n = 5) post hydrocephalus induction. We also analyzed whether the vascular pathology seen in tgAPP21 rats, which develop amyloid angiopathy, was accelerated by hydrocephalus. Age-matched naïve and sham-operated tgAPP21 rats served as controls (n = 19). RESULTS: In hydrocephalic tgAPP21 rats, compared to naïve and sham-operated controls, there was increased Aß 40 and oligomeric Aß in hippocampal and cortical neurons at 10 weeks and 6 months post-hydrocephalus induction. No dense-core amyloid plaques were seen, but diffuse Aß immunoreactivity was evident in neurons. Vascular pathology was accelerated by the induction of hydrocephalus compared to controls. In the six-month-old rats, subtle degenerative changes were noted in vessel walls at 10 weeks post-kaolin, whereas at six months post-kaolin and in the 12-month-old hydrocephalic rats more pronounced amyloid angiopathic changes were seen, with frequent large areas of infarction noted. CONCLUSIONS: Kaolin-hydrocephalus can accelerate intraneuronal Aß40 accumulation and vascular pathology in tgAPP21 rats. In addition, disrupted CSF production and reduced CSF turnover results in impaired Aß clearance and accelerated vascular pathology in chronic hydrocephalus. The high co-morbidity seen in NPH, AD and CVD is likely not to be an age-related coincidence, but rather a convergence of pathologies related to diminished CSF clearance.

SELECTION OF CITATIONS
SEARCH DETAIL
...