Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Language
Publication year range
1.
Mar Environ Res ; 190: 106086, 2023 Sep.
Article in English | MEDLINE | ID: mdl-37481877

ABSTRACT

Intertidal macroalgae, such as coralline algae, represent an essential structural element and substrate in rocky coastal zones. They have a high degree of flexibility allowing their survival in environments with severe mechanical stress during tidal cycles. This study characterised the genicula and intergenicula of the calcifying red algae Corallina officinalis across its geographic distribution in the Northeast Atlantic. Poleward populations have constructed more sturdy cell walls compared to equatorward populations, potentially due to greater local adaptations to higher frequency and intensity of environmental factors like storms and wave action. Southern populations showed a lack of local adaptation culminating in survival rather than thriving within their current environment, hence, they are located at the margin of this species' favourable conditions. Results clarify significant differences between latitudes and indicate a north-to-south gradient in this species' skeletal elemental composition. Northern populations were dominated by cadmium, whereas chromium was the major trace element found in southern populations. In the future, these characteristics could lead to a permanent decline and a decrease in the ecosystem functions of C. officinalis in the southern locations in the Northeast Atlantic, which may be accelerated by predicted future climatic changes.


Subject(s)
Rhodophyta , Seaweed , Trace Elements , Ecosystem , Adaptation, Physiological
2.
Science ; 335(6074): 1334-6, 2012 Mar 16.
Article in English | MEDLINE | ID: mdl-22422979

ABSTRACT

Models for the growth of continental crust rely on knowing the balance between the generation of new crust and the reworking of old crust throughout Earth's history. The oxygen isotopic composition of zircons, for which uranium-lead and hafnium isotopic data provide age constraints, is a key archive of crustal reworking. We identified systematic variations in hafnium and oxygen isotopes in zircons of different ages that reveal the relative proportions of reworked crust and of new crust through time. Growth of continental crust appears to have been a continuous process, albeit at variable rates. A marked decrease in the rate of crustal growth at ~3 billion years ago may be linked to the onset of subduction-driven plate tectonics.

3.
Science ; 323(5910): 49-50, 2009 Jan 02.
Article in English | MEDLINE | ID: mdl-19119206
SELECTION OF CITATIONS
SEARCH DETAIL