Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Ecotoxicol Environ Saf ; 111: 263-70, 2015 Jan.
Article in English | MEDLINE | ID: mdl-25450943

ABSTRACT

Studies assessing the acute and chronic toxicity of silver nanoparticle (nAg) materials rarely consider potential implications of environmental variables. In order to increase our understanding in this respect, we investigated the acute and chronic effects of various nAg materials on Daphnia magna. Thereby, different nanoparticle size classes with a citrate coating (20-, ~30-, 60- as well as 100-nm nAg) and one size class without any coating (140 nm) were tested, considering at the same time two pH levels (6.5 and 8.0) as well as the absence or presence of dissolved organic matter (DOM; <0.1 or 8.0 mg total organic carbon/L). Results display a reduced toxicity of nAg in media with higher pH and the presence of DOM as well as increasing initial particle size, if similarly coated. This suggests that the associated fraction of Ag species <2 nm (including Ag(+)) is driving the nAg toxicity. This hypothesis is supported by normalizing the 48-h EC50-values to Ag species <2 nm, which displays comparable toxicity estimates for the majority of the nAg materials assessed. It may therefore be concluded that a combination of both the particle characteristics, i.e. its initial size and surface coating, and environmental factors trigger the toxicity of ion-releasing nanoparticles.


Subject(s)
Daphnia/drug effects , Metal Nanoparticles/toxicity , Organic Chemicals/toxicity , Silver/toxicity , Animals , Citric Acid/chemistry , Citric Acid/toxicity , Hydrogen-Ion Concentration , Particle Size , Silver Compounds/chemistry , Silver Compounds/toxicity , Toxicity Tests, Acute , Toxicity Tests, Chronic , Water Pollutants, Chemical/toxicity
SELECTION OF CITATIONS
SEARCH DETAIL