Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 75
Filter
1.
Article in English | MEDLINE | ID: mdl-38888172

ABSTRACT

Silver-Russell Syndrome (SRS) is a clinical diagnosis requiring the fulfilment of ≥4/6 Netchine-Harbison Clinical Scoring System (NH-CSS) criteria. A score of ≥4/6 (or ≥3/6 with strong clinical suspicion) NH-CSS warrants (epi)genetic confirmation as an underlying cause can be identified in ∼60% patients. The approach to the investigation and diagnosis of SRS is detailed in the only international consensus guidance, published in 2016. In the intervening years, the clinical, biochemical, and (epi)genetic characteristics of SRS have rapidly expanded, largely attributable to advancing molecular genetic techniques and a greater awareness of related disorders. The commonest etiologies of SRS remain loss of methylation of chromosome 11p15 (11p15LOM) and maternal uniparental disomy of chromosome 7 (upd(7)mat). Rarer causes of SRS include monogenic pathogenic variants in imprinted (CDKN1C and IGF2) and non-imprinted (PLAG1 and HMGA2) genes. Although the age-specific NH-CSS can identify commoner molecular causes of SRS, its use in identifying monogenic causes is unclear. Preliminary data suggest NH-CSS is poor at identifying many of these cases. Additionally, there has been increased recognition of conditions with phenotypes overlapping with SRS that may fulfil NH-CSS criteria but have distinct genetic aetiologies and disease trajectories. This group of conditions is frequently overlooked and under-investigated, leading to no or delayed diagnosis. Like SRS, these conditions are multisystem disorders requiring multidisciplinary care and tailored management strategies. Early identification is crucial to improve outcomes and reduce the major burden of the diagnostic odyssey for patients and families. This article aims to enable clinicians to identify key features of rarer causes of SRS and conditions with overlapping phenotypes, show a logical approach to the molecular investigation and highlight the differences in clinical management strategies.

2.
JCI Insight ; 9(6)2024 Feb 20.
Article in English | MEDLINE | ID: mdl-38516887

ABSTRACT

Silver-Russell syndrome (SRS) is a heterogeneous disorder characterized by intrauterine and postnatal growth retardation. HMGA2 variants are a rare cause of SRS and its functional role in human linear growth is unclear. Patients with suspected SRS negative for 11p15LOM/mUPD7 underwent whole-exome and/or targeted-genome sequencing. Mutant HMGA2 protein expression and nuclear localization were assessed. Two Hmga2-knockin mouse models were generated. Five clinical SRS patients harbored HMGA2 variants with differing functional impacts: 2 stop-gain nonsense variants (c.49G>T, c.52C>T), c.166A>G missense variant, and 2 frameshift variants (c.144delC, c.145delA) leading to an identical, extended-length protein. Phenotypic features were highly variable. Nuclear localization was reduced/absent for all variants except c.166A>G. Homozygous knockin mice recapitulating the c.166A>G variant (Hmga2K56E) exhibited a growth-restricted phenotype. An Hmga2Ter76-knockin mouse model lacked detectable full-length Hmga2 protein, similarly to patient 3 and 5 variants. These mice were infertile, with a pygmy phenotype. We report a heterogeneous group of individuals with SRS harboring variants in HMGA2 and describe the first Hmga2 missense knockin mouse model (Hmga2K56E) to our knowledge causing a growth-restricted phenotype. In patients with clinical features of SRS but negative genetic screening, HMGA2 should be included in next-generation sequencing testing approaches.


Subject(s)
HMGA2 Protein , Silver-Russell Syndrome , Animals , Humans , Mice , Base Sequence , Growth Disorders/genetics , HMGA2 Protein/genetics , Phenotype , Silver-Russell Syndrome/genetics , Silver-Russell Syndrome/diagnosis
3.
Nat Rev Endocrinol ; 20(5): 278-289, 2024 May.
Article in English | MEDLINE | ID: mdl-38336897

ABSTRACT

Tumours of the anterior part of the pituitary gland represent just 1% of all childhood (aged <15 years) intracranial neoplasms, yet they can confer high morbidity and little evidence and guidance is in place for their management. Between 2014 and 2022, a multidisciplinary expert group systematically developed the first comprehensive clinical practice consensus guideline for children and young people under the age 19 years (hereafter referred to as CYP) presenting with a suspected pituitary adenoma to inform specialist care and improve health outcomes. Through robust literature searches and a Delphi consensus exercise with an international Delphi consensus panel of experts, the available scientific evidence and expert opinions were consolidated into 74 recommendations. Part 1 of this consensus guideline includes 17 pragmatic management recommendations related to clinical care, neuroimaging, visual assessment, histopathology, genetics, pituitary surgery and radiotherapy. While in many aspects the care for CYP is similar to that of adults, key differences exist, particularly in aetiology and presentation. CYP with suspected pituitary adenomas require careful clinical examination, appropriate hormonal work-up, dedicated pituitary imaging and visual assessment. Consideration should be given to the potential for syndromic disease and genetic assessment. Multidisciplinary discussion at both the local and national levels can be key for management. Surgery should be performed in specialist centres. The collection of outcome data on novel modalities of medical treatment, surgical intervention and radiotherapy is essential for optimal future treatment.


Subject(s)
Adenoma , Pituitary Neoplasms , Adult , Child , Humans , Adolescent , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/genetics , Pituitary Neoplasms/therapy , Adenoma/diagnosis , Adenoma/epidemiology , Adenoma/therapy , Pituitary Gland , Consensus , Neuroimaging
4.
Nat Rev Endocrinol ; 20(5): 290-309, 2024 May.
Article in English | MEDLINE | ID: mdl-38336898

ABSTRACT

Pituitary adenomas are rare in children and young people under the age of 19 (hereafter referred to as CYP) but they pose some different diagnostic and management challenges in this age group than in adults. These rare neoplasms can disrupt maturational, visual, intellectual and developmental processes and, in CYP, they tend to have more occult presentation, aggressive behaviour and are more likely to have a genetic basis than in adults. Through standardized AGREE II methodology, literature review and Delphi consensus, a multidisciplinary expert group developed 74 pragmatic management recommendations aimed at optimizing care for CYP in the first-ever comprehensive consensus guideline to cover the care of CYP with pituitary adenoma. Part 2 of this consensus guideline details 57 recommendations for paediatric patients with prolactinomas, Cushing disease, growth hormone excess causing gigantism and acromegaly, clinically non-functioning adenomas, and the rare TSHomas. Compared with adult patients with pituitary adenomas, we highlight that, in the CYP group, there is a greater proportion of functioning tumours, including macroprolactinomas, greater likelihood of underlying genetic disease, more corticotrophinomas in boys aged under 10 years than in girls and difficulty of peri-pubertal diagnosis of growth hormone excess. Collaboration with pituitary specialists caring for adult patients, as part of commissioned and centralized multidisciplinary teams, is key for optimizing management, transition and lifelong care and facilitates the collection of health-related quality of survival outcomes of novel medical, surgical and radiotherapeutic treatments, which are currently largely missing.


Subject(s)
Acromegaly , Adenoma , Pituitary Neoplasms , Prolactinoma , Adult , Male , Female , Humans , Adolescent , Child , Aged , Pituitary Neoplasms/diagnosis , Pituitary Neoplasms/therapy , Pituitary Neoplasms/pathology , Adenoma/diagnosis , Adenoma/therapy , Prolactinoma/diagnosis , Prolactinoma/surgery
5.
Horm Res Paediatr ; 97(1): 22-27, 2024.
Article in English | MEDLINE | ID: mdl-37166328

ABSTRACT

BACKGROUND: Paediatric endocrinology became recognised in Western European countries in the 1960s and 1970s. It is now a thriving paediatric sub-speciality in many countries but remains non-existent or in its infancy in others. We have had the privilege to work in Western centres of excellence, and this review outlines the key stages in the development of modern centres, discussing the human and organisational issues that have underpinned progress in the establishment of this paediatric sub-speciality. SUMMARY: Human determination, vision, and ambition to create a modern centre and become a national flag bearer in the field are key components of success. The realisation that learning by spending time as a fellow away from one's home institution, so that knowledge can be acquired and brought back home, is also a key factor. Career structures should be designed to mentor and guide the trainee returning from a fellowship abroad. Scientific societies such as the European Society for Paediatric Endocrinology (ESPE) are key resources for networking, support, and discussion with experienced colleagues who may have faced similar challenges. Training and acquisition of knowledge through on-site or e-learning initiatives are beneficial and numerous examples exist, including the telemedicine model of store-and-forward consultations. Leadership skills can be learnt, and good working relationships with adult endocrinology colleagues result in benefits and political support. KEY MESSAGES: The development of paediatric endocrinology in a region with hitherto no such facilities constitutes a major contribution to local, regional, and, in all likelihood, national patient care.


Subject(s)
Endocrinology , Pediatrics , Child , Humans , Specialization
6.
Cell Rep Methods ; 3(11): 100627, 2023 Nov 20.
Article in English | MEDLINE | ID: mdl-37924815

ABSTRACT

Adrenal insufficiency is a life-threatening condition resulting from the inability to produce adrenal hormones in a dose- and time-dependent manner. Establishing a cell-based therapy would provide a physiologically responsive approach for the treatment of this condition. We report the generation of large numbers of human-induced steroidogenic cells (hiSCs) from human pluripotent stem cells (hPSCs). Directed differentiation of hPSCs into hiSCs recapitulates the initial stages of human adrenal development. Following expression of steroidogenic factor 1, activation of protein kinase A signaling drives a steroidogenic gene expression profile most comparable to human fetal adrenal cells, and leads to dynamic secretion of steroid hormones, in vitro. Moreover, expression of the adrenocorticotrophic hormone (ACTH) receptor/co-receptor (MC2R/MRAP) results in dose-dependent ACTH responsiveness. This protocol recapitulates adrenal insufficiency resulting from loss-of-function mutations in AAAS, which cause the enigmatic triple A syndrome. Our differentiation protocol generates sufficient numbers of hiSCs for cell-based therapy and offers a platform to study disorders causing adrenal insufficiency.


Subject(s)
Adrenal Insufficiency , Pluripotent Stem Cells , Humans , Glucocorticoids/pharmacology , Adrenal Insufficiency/genetics , Adrenocorticotropic Hormone/pharmacology , Pluripotent Stem Cells/metabolism , Receptors, Corticotropin
7.
Orphanet J Rare Dis ; 18(1): 312, 2023 10 07.
Article in English | MEDLINE | ID: mdl-37805563

ABSTRACT

BACKGROUND: Severe primary insulin-like growth factor-I (IGF-I) deficiency (SPIGFD) is a rare growth disorder characterized by short stature (standard deviation score [SDS] ≤ 3.0), low circulating concentrations of IGF-I (SDS ≤ 3.0), and normal or elevated concentrations of growth hormone (GH). Laron syndrome is the best characterized form of SPIGFD, caused by a defect in the GH receptor (GHR) gene. However, awareness of SPIGFD remains low, and individuals living with SPIGFD continue to face challenges associated with diagnosis, treatment and care. OBJECTIVE: To gather perspectives on the key challenges for individuals and families living with SPIGFD through a multi-stakeholder approach. By highlighting critical gaps in the awareness, diagnosis, and management of SPIGFD, this report aims to provide recommendations to improve care for people affected by SPIGFD globally. METHODS: An international group of clinical experts, researchers, and patient and caregiver representatives from the SPIGFD community participated in a virtual, half-day meeting to discuss key unmet needs and opportunities to improve the care of people living with SPIGFD. RESULTS: As a rare disorder, limited awareness and understanding of SPIGFD amongst healthcare professionals (HCPs) poses significant challenges in the diagnosis and treatment of those affected. Patients often face difficulties associated with receiving a formal diagnosis, delayed treatment initiation and limited access to appropriate therapy. This has a considerable impact on the physical health and quality of life for patients, highlighting a need for more education and clearer guidance for HCPs. Support from patient advocacy groups is valuable in helping patients and their families to find appropriate care. However, there remains a need to better understand the burden that SPIGFD has on individuals beyond height, including the impact on physical, emotional, and social wellbeing. CONCLUSIONS: To address the challenges faced by individuals and families affected by SPIGFD, greater awareness of SPIGFD is needed within the healthcare community, and a consensus on best practice in the care of individuals affected by this condition. Continued efforts are also needed at a global level to challenge existing perceptions around SPIGFD, and identify solutions that promote equitable access to appropriate care. Medical writing support was industry-sponsored.


Subject(s)
Dwarfism , Laron Syndrome , Humans , Insulin-Like Growth Factor I/therapeutic use , Quality of Life , Laron Syndrome/diagnosis , Laron Syndrome/drug therapy , Laron Syndrome/genetics , Dwarfism/drug therapy , Growth Disorders
8.
Front Endocrinol (Lausanne) ; 14: 1226839, 2023.
Article in English | MEDLINE | ID: mdl-37701896

ABSTRACT

Introduction: Delayed puberty (DP) is a frequent concern for adolescents. The most common underlying aetiology is self-limited DP (SLDP). However, this can be difficult to differentiate from the more severe condition congenital hypogonadotrophic hypogonadism (HH), especially on first presentation of an adolescent patient with DP. This study sought to elucidate phenotypic differences between the two diagnoses, in order to optimise patient management and pubertal development. Methods: This was a study of a UK DP cohort managed 2015-2023, identified through the NIHR clinical research network. Patients were followed longitudinally until adulthood, with a definite diagnosis made: SLDP if they had spontaneously completed puberty by age 18 years; HH if they had not commenced (complete, cHH), or had commenced but not completed puberty (partial, pHH), by this stage. Phenotypic data pertaining to auxology, Tanner staging, biochemistry, bone age and hormonal treatment at presentation and during puberty were retrospectively analysed. Results: 78 patients were included. 52 (66.7%) patients had SLDP and 26 (33.3%) patients had HH, comprising 17 (65.4%) pHH and 9 (34.6%) cHH patients. Probands were predominantly male (90.4%). Male SLDP patients presented with significantly lower height and weight standard deviation scores than HH patients (height p=0.004, weight p=0.021). 15.4% of SLDP compared to 38.5% of HH patients had classical associated features of HH (micropenis, cryptorchidism, anosmia, etc. p=0.023). 73.1% of patients with SLDP and 43.3% with HH had a family history of DP (p=0.007). Mean first recorded luteinizing hormone (LH) and inhibin B were lower in male patients with HH, particularly in cHH patients, but not discriminatory. There were no significant differences identified in blood concentrations of FSH, testosterone or AMH at presentation, or in bone age delay. Discussion: Key clinical markers of auxology, associated signs including micropenis, and serum inhibin B may help distinguish between SLDP and HH in patients presenting with pubertal delay, and can be incorporated into clinical assessment to improve diagnostic accuracy for adolescents. However, the distinction between HH, particularly partial HH, and SLDP remains problematic. Further research into an integrated framework or scoring system would be useful in aiding clinician decision-making and optimization of treatment. .


Subject(s)
Hypogonadism , Puberty, Delayed , Adolescent , Humans , Male , Adult , Female , Puberty, Delayed/diagnosis , Retrospective Studies , Testosterone , Hypogonadism/diagnosis
10.
Br J Gen Pract ; 73(731): 255, 2023 06.
Article in English | MEDLINE | ID: mdl-37230790
11.
Eur J Endocrinol ; 188(4): 353-365, 2023 Apr 04.
Article in English | MEDLINE | ID: mdl-36943306

ABSTRACT

OBJECTIVE: Growth hormone insensitivity (GHI) encompasses growth restriction, normal/elevated growth hormone (GH), and low insulin-like growth factor I (IGF1). "Nonclassical" GHI is poorly characterized and is rarely caused by heterozygous dominant-negative (DN) variants located in the intracellular or transmembrane domains of the GH receptor (GHR). We sought to determine the molecular mechanisms underpinning the growth restriction in 2 GHI cases. METHODS AND DESIGN: A custom-made genetic investigative pipeline was exploited to identify the genetic cause of growth restriction in patients with GHI. Nanoluc binary technology (NanoBiT), in vitro splicing assays, western blotting, and flow cytometry, characterized the novel GHR variants. RESULTS: Novel heterozygous GHR variants were identified in 2 unrelated patients with GHI. In vitro splicing assays indicated both variants activated the same alternative splice acceptor site resulting in aberrant splicing and exclusion of 26 base pairs of GHR exon 9. The GHR variants produced truncated receptors and impaired GH-induced GHR signaling. NanoBiT complementation and flow cytometry showed increased cell surface expression of variant GHR homo/heterodimers compared to wild-type (WT) homodimers and increased recombinant human GH binding to variant GHR homo/heterodimers and GH binding protein (GHBP) cleaved from the variant GHRs. The findings demonstrated increased variant GHR dimers and GHBP with resultant GH sequestration. CONCLUSION: We identified and characterized 2 novel, naturally occurring truncated GHR gene variants. Intriguingly, these DN GHR variants act via the same cryptic splice acceptor site, highlighting impairing GH binding to excess GHBP as a potential therapeutic approach.


Subject(s)
Dwarfism , Human Growth Hormone , Humans , Growth Hormone/genetics , Receptors, Somatotropin/genetics , RNA Splice Sites , Human Growth Hormone/metabolism , Dwarfism/genetics , Insulin-Like Growth Factor I/genetics
14.
Dis Model Mech ; 16(3)2023 03 01.
Article in English | MEDLINE | ID: mdl-36810932

ABSTRACT

Gonadotropin-releasing hormone (GnRH) deficiency (GD) is a disorder characterized by absent or delayed puberty, with largely unknown genetic causes. The purpose of this study was to obtain and exploit gene expression profiles of GnRH neurons during development to unveil novel biological mechanisms and genetic determinants underlying GD. Here, we combined bioinformatic analyses of immortalized and primary embryonic GnRH neuron transcriptomes with exome sequencing from GD patients to identify candidate genes implicated in the pathogenesis of GD. Among differentially expressed and filtered transcripts, we found loss-of-function (LoF) variants of the autism-linked neuroligin 3 (NLGN3) gene in two unrelated patients co-presenting with GD and neurodevelopmental traits. We demonstrated that NLGN3 is upregulated in maturing GnRH neurons and that NLGN3 wild-type, but not mutant, protein promotes neuritogenesis when overexpressed in developing GnRH cells. Our data represent proof of principle that this complementary approach can identify new candidate GD genes and demonstrate that LoF NLGN3 variants can contribute to GD. This novel genotype-phenotype correlation implies common genetic mechanisms underlying neurodevelopmental disorders, such as GD and autistic spectrum disorder.


Subject(s)
Autistic Disorder , Humans , Autistic Disorder/genetics , Nerve Tissue Proteins/genetics , Nerve Tissue Proteins/metabolism , Membrane Proteins/genetics , Membrane Proteins/metabolism , Gonadotropin-Releasing Hormone/metabolism
15.
Mayo Clin Proc Digit Health ; 1(4): 498-509, 2023 Dec.
Article in English | MEDLINE | ID: mdl-38169882

ABSTRACT

Objective: To develop and evaluate a smartphone application that accurately measures height and provides notifications when abnormalities are detected. Patients and Methods: A total of 145 (75 boys) participants with a mean age ± SD of 8.7±4.5 years (range, 1.0-17.0 years), from the Children's Hospital at Barts Health Trust, London, United Kingdom, were enrolled in the study. "GrowthMonitor" (UCL Creatives) iPhone application (GMA) measures height using augmented reality. Using population-based (UK-WHO) references, algorithms calculated height SD score (HSDS), distance from target height (THSDSDEV), and HSDS change over time (ΔHSDS). Pre-established thresholds discriminated normal/abnormal growth. The GMA and a stadiometer (Harpenden; gold standard) measured standing heights of children at routine clinic visits. A subset of parents used GMA to measure their child's height at home. Outcome targets were 95% of GMA measurements within ±0.5 SDS of the stadiometer and the correct identification of abnormal HSDS, THSDSDEV, and ΔHSDS. Results: Bland-Altman plots revealed no appreciable bias in differences between paired study team GMA and stadiometer height measurements, with a mean of the differences of 0.11 cm with 95% limits of agreement of -2.21 to 2.42 cm. There was no evidence of greater bias occurring for either shorter/younger children or taller/older children. The 2 methods of measurements were highly correlated (R=0.999). GrowthMonitor iPhone application measurements performed by parents in clinic and at home were slightly less accurate. The κ coefficient indicated reliable and consistent agreement of flag alerts for HSDS (κ=0.74) and THSDSDEV (κ=0.88) between 83 paired GMA and stadiometer measurements. GrowthMonitor iPhone application yielded a detection rate of 96% and 97% for HSDS-based and THSDSDEV-based red flags, respectively. Forty-two (18 boys) participants had GMA calculated ΔHSDS using an additional height measurement 6-16 months later, and no abnormal flag alerts were triggered for ΔHSDS values. Conclusion: GrowthMonitor iPhone application provides the potential for parents/carers and health care professionals to capture serial height measurements at home and without specialized equipment. Reliable interpretation and flagging of abnormal measurements indicate the potential of this technology to transform childhood growth monitoring.

16.
BMC Med ; 20(1): 468, 2022 12 05.
Article in English | MEDLINE | ID: mdl-36464678

ABSTRACT

BACKGROUND: In low- and middle-income countries, poverty and impaired growth prevent children from meeting their cognitive developmental potential. There are few studies investigating these relationships in high-income settings. METHODS: Participants were 12,536 children born between 2000 and 2002 in the UK and participating in the Millennium Cohort Study (MCS). Short stature was defined as having a height-for-age 2 or more standard deviations below the median (≤ - 2 SDS) at age 3 years. Standardized British Abilities Scales II (BAS II) language measures, used to assess language development at ages 3, 5, 7 and 11 years, were the main outcome assessed. RESULTS: Children with short stature at age 3 years (4.1%) had language development scores that were consistently lower from ages 3 to 11 years (- 0.26 standard deviations (SD) (95% CI - 0.37, - 0.15)). This effect was attenuated but remained significant after adjustment for covariates. Trajectory analysis produced four distinct patterns of language development scores (low-declining, low-improving, average and high). Multinomial logistic regression models showed that children with short stature had a higher risk of being in the low-declining group, relative to the average group (relative risk ratio (RRR) = 2.11 (95% CI 1.51, 2.95)). They were also less likely to be in the high-scoring group (RRR = 0.65 (0.52, 0.82)). Children with short stature at age 3 years who had 'caught up' by age 5 years (height-for-age ≥ 2 SDS) did not have significantly different scores from children with persistent short stature, but had a higher probability of being in the high-performing group than children without catch-up growth (RRR = 1.84 (1.11, 3.07)). CONCLUSIONS: Short stature at age 3 years was associated with lower language development scores at ages 3 to 11 years in UK children. These associations remained significant after adjustment for socioeconomic, child and parental factors.


Subject(s)
Body Height , Language Development , Child , Humans , Child, Preschool , Cohort Studies , Odds Ratio , United Kingdom/epidemiology
17.
BMJ Paediatr Open ; 6(1)2022 07.
Article in English | MEDLINE | ID: mdl-36053660

ABSTRACT

OBJECTIVE: The aim of this observational study was to evaluate the UK and Dutch referral criteria for short stature to determine their sensitivity and specificity in predicting pathological short stature. Adherence to the recommended panel of investigations was also assessed. STUDY DESIGN: Retrospective review of medical records to examine the auxological parameters, investigations and diagnosis of subjects referred to two paediatric endocrine clinics at the Royal London Children's Hospital between 2016 and 2021. We analysed: height SD score (HtSDS), height SDS minus target height SDS (Ht-THSDS) and height deflection SDS (HtDefSDS). The UK referral criteria were HtSDS <-2.7, Ht-THSDS >2.0 and HtDefSDS >1.3. The Dutch referral criteria were HtSDS <-2.0, Ht-THSDS >1.6 and HtDefSDS >1.0. RESULTS: Data were available for 143 subjects (72% males) with mean (range) age 8.7 years (0.5-19.9). HtSDS and Ht-THSDS were significantly lower in the pathological stature (n=66) versus the non-pathological stature (n=77) subjects (-2.67±0.82 vs -1.97±0.70; p<0.001 and -2.07±1.02 vs -1.06±0.99; p<0.001, respectively). The sensitivity and specificity to detect pathology was 41% and 83% for the UK criteria (HtSDS <-2.7) compared with 59% and 79% for the Dutch criteria (HtSDS <-2.0), 48% and 83% for UK criteria (Ht-THSDS <-2.0) compared with 74% and 72% for Dutch criteria (Ht-THSDS <-1.6) and 33% and 68% for UK criteria (HtDefSDS >1.3) compared with 44% and 63% for the Dutch criteria (HtDefSDS >1.0). On average, each patient had 88% of the recommended investigations, and 53% had all the recommended testing. New pathology was identified in 36% of subjects. CONCLUSIONS: In isolation, the UK auxological referral thresholds have limited sensitivity and specificity for pathological short stature. The combination of HtSDS and Ht-THSDS improved the sensitivity of UK criteria to detect pathology from 41% to 68%. Attention to the child's genetic height potential prior to referral can prevent unnecessary assessments.


Subject(s)
Body Height , Dwarfism , Child , Female , Growth Disorders/diagnosis , Humans , Male , Referral and Consultation , United Kingdom
18.
Endocr Connect ; 11(8)2022 Aug 01.
Article in English | MEDLINE | ID: mdl-35904228

ABSTRACT

Sphingosine-1-phosphate lyase (SGPL1) insufficiency syndrome (SPLIS) is an autosomal recessive multi-system disorder, which mainly incorporates steroid-resistant nephrotic syndrome and primary adrenal insufficiency. Other variable endocrine manifestations are described. In this study, we aimed to comprehensively annotate the endocrinopathies associated with pathogenic SGPL1 variants and assess for genotype-phenotype correlations by retrospectively reviewing the reports of endocrine disease within our patient cohort and all published cases in the wider literature up to February 2022. Glucocorticoid insufficiency in early childhood is the most common endocrine manifestation affecting 64% of the 50 patients reported with SPLIS, and a third of these individuals have additional mineralocorticoid deficiency. While most individuals also have nephrotic syndrome, SGPL1 variants also account for isolated adrenal insufficiency at presentation. Primary gonadal insufficiency, manifesting with microphallus and cryptorchidism, is reported in less than one-third of affected boys, all with concomitant adrenal disease. Mild primary hypothyroidism affects approximately a third of patients. There is paucity of data on the impact of SGPL1 deficiency on growth, and pubertal development, limited by the early and high mortality rate (approximately 50%). There is no clear genotype-phenotype correlation overall in the syndrome, with variable disease penetrance within individual kindreds. However, with regards to endocrine phenotype, the most prevalent disease variant p.R222Q (affecting 22%) is most consistently associated with isolated glucocorticoid deficiency. To conclude, SPLIS is associated with significant multiple endocrine disorders. While endocrinopathy in the syndrome generally presents in infancy, late-onset disease also occurs. Screening for these is therefore warranted both at diagnosis and through follow-up.

19.
Front Endocrinol (Lausanne) ; 12: 781044, 2021.
Article in English | MEDLINE | ID: mdl-34956092

ABSTRACT

Idiopathic short stature (ISS) is a term used to describe a selection of short children for whom no precise aetiology has been identified. Molecular investigations have made notable discoveries in children with ISS, thus removing them from this category. However, many, if not the majority of children referred with short stature, are designated ISS. Our interest in defects of GH action, i.e. GH resistance, has led to a study of children with mild GH resistance, who we believe can be mis-categorised as ISS leading to potential inappropriate management. Approval of ISS by the FDA for hGH therapy has resulted in many short children receiving this treatment. The results are extremely variable. It is therefore important to correctly assess and investigate all ISS subjects in order to identify those with mild but unequivocal GH resistance, as in cases of PAPP-A2 deficiency. The correct identification of GH resistance defects will direct therapy towards rhIGF-I rather than rhGH. This example illustrates the importance of recognition of GH resistance among the very large number patients referred with short stature who are labelled as 'ISS'.


Subject(s)
Body Height/physiology , Drug Resistance/physiology , Growth Disorders/drug therapy , Growth Disorders/metabolism , Human Growth Hormone/administration & dosage , Human Growth Hormone/metabolism , Body Height/drug effects , Child , Drug Resistance/drug effects , Growth Disorders/genetics , Human Growth Hormone/genetics , Humans , Insulin-Like Growth Factor I/genetics , Insulin-Like Growth Factor I/metabolism , Mutation/physiology , Receptors, Somatotropin/genetics , Receptors, Somatotropin/metabolism
20.
PLoS Med ; 18(9): e1003760, 2021 09.
Article in English | MEDLINE | ID: mdl-34582440

ABSTRACT

BACKGROUND: Short stature, defined as height for age more than 2 standard deviations (SDs) below the population median, is an important indicator of child health. Short stature (often termed stunting) has been widely researched in low- and middle-income countries (LMICs), but less is known about the extent and burden in high-income settings. We aimed to map the prevalence of short stature in children aged 4-5 years in England between 2006 and 2019. METHODS AND FINDINGS: We used data from the National Child Measurement Programme (NCMP) for the school years 2006-2007 to 2018-2019. All children attending state-maintained primary schools in England are invited to participate in the NCMP, and heights from a total of 7,062,071 children aged 4-5 years were analysed. We assessed short stature, defined as a height-for-age standard deviation score (SDS) below -2 using the United Kingdom WHO references, by sex, index of multiple deprivation (IMD), ethnicity, and region. Geographic clustering of short stature was analysed using spatial analysis in SaTScan. The prevalence of short stature in England was 1.93% (95% confidence interval (CI) 1.92-1.94). Ethnicity adjusted spatial analyses showed geographic heterogeneity of short stature, with high prevalence clusters more likely in the North and Midlands, leading to 4-fold variation between local authorities (LAs) with highest and lowest prevalence of short stature. Short stature was linearly associated with IMD, with almost 2-fold higher prevalence in the most compared with least deprived decile (2.56% (2.53-2.59) vs. 1.38% (1.35-1.41)). There was ethnic heterogeneity: Short stature prevalence was lowest in Black children (0.64% (0.61-0.67)) and highest in Indian children (2.52% (2.45-2.60)) and children in other ethnic categories (2.57% (2.51-2.64)). Girls were more likely to have short stature than boys (2.09% (2.07-2.10) vs. 1.77% (1.76-1.78), respectively). Short stature prevalence declined over time, from 2.03% (2.01-2.05) in 2006-2010 to 1.82% (1.80-1.84) in 2016-2019. Short stature declined at all levels of area deprivation, with faster declines in more deprived areas, but disparities by IMD quintile were persistent. This study was conducted cross-sectionally at an area level, and, therefore, we cannot make any inferences about the individual causes of short stature. CONCLUSIONS: In this study, we observed a clear social gradient and striking regional variation in short stature across England, including a North-South divide. These findings provide impetus for further investigation into potential socioeconomic influences on height and the factors underlying regional variation.


Subject(s)
Growth Disorders/epidemiology , Body Height/ethnology , Child, Preschool , Cross-Sectional Studies , England/epidemiology , Female , Growth Disorders/ethnology , Humans , Male , Prevalence , Sex Factors , Socioeconomic Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...