Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 64
Filter
Add more filters










Publication year range
1.
Nat Commun ; 15(1): 3219, 2024 Apr 15.
Article in English | MEDLINE | ID: mdl-38622143

ABSTRACT

Diverse aerobic bacteria use atmospheric hydrogen (H2) and carbon monoxide (CO) as energy sources to support growth and survival. Such trace gas oxidation is recognised as a globally significant process that serves as the main sink in the biogeochemical H2 cycle and sustains microbial biodiversity in oligotrophic ecosystems. However, it is unclear whether archaea can also use atmospheric H2. Here we show that a thermoacidophilic archaeon, Acidianus brierleyi (Thermoproteota), constitutively consumes H2 and CO to sub-atmospheric levels. Oxidation occurs across a wide range of temperatures (10 to 70 °C) and enhances ATP production during starvation-induced persistence under temperate conditions. The genome of A. brierleyi encodes a canonical CO dehydrogenase and four distinct [NiFe]-hydrogenases, which are differentially produced in response to electron donor and acceptor availability. Another archaeon, Metallosphaera sedula, can also oxidize atmospheric H2. Our results suggest that trace gas oxidation is a common trait of Sulfolobales archaea and may play a role in their survival and niche expansion, including during dispersal through temperate environments.


Subject(s)
Acidianus , Archaea , Temperature , Ecosystem , Oxidation-Reduction , Hydrogen
2.
Nat Commun ; 15(1): 179, 2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38167814

ABSTRACT

Allopatric speciation has been difficult to examine among microorganisms, with prior reports of endemism restricted to sub-genus level taxa. Previous microbial community analysis via 16S rRNA gene sequencing of 925 geothermal springs from the Taupo Volcanic Zone (TVZ), Aotearoa-New Zealand, revealed widespread distribution and abundance of a single bacterial genus across 686 of these ecosystems (pH 1.2-9.6 and 17.4-99.8 °C). Here, we present evidence to suggest that this genus, Venenivibrio (phylum Aquificota), is endemic to Aotearoa-New Zealand. A specific environmental niche that increases habitat isolation was identified, with maximal read abundance of Venenivibrio occurring at pH 4-6, 50-70 °C, and low oxidation-reduction potentials. This was further highlighted by genomic and culture-based analyses of the only characterised species for the genus, Venenivibrio stagnispumantis CP.B2T, which confirmed a chemolithoautotrophic metabolism dependent on hydrogen oxidation. While similarity between Venenivibrio populations illustrated that dispersal is not limited across the TVZ, extensive amplicon, metagenomic, and phylogenomic analyses of global microbial communities from DNA sequence databases indicates Venenivibrio is geographically restricted to the Aotearoa-New Zealand archipelago. We conclude that geographic isolation, complemented by physicochemical constraints, has resulted in the establishment of an endemic bacterial genus.


Subject(s)
Microbiota , New Zealand , RNA, Ribosomal, 16S/genetics , Phylogeny , Metagenome
3.
Microbiol Resour Announc ; 13(1): e0081523, 2024 Jan 17.
Article in English | MEDLINE | ID: mdl-38095867

ABSTRACT

Thermococcus waiotapuensis WT1T is a thermophilic, peptide, and amino acid-fermenting archaeon from the order Thermococcales. It was isolated from Waiotapu, Aotearoa-New Zealand, and has a genome size of 1.80 Mbp. The genome contains 2,000 total genes, of which 1,913 encode proteins and 46 encode tRNA.

4.
Front Microbiol ; 14: 1253773, 2023.
Article in English | MEDLINE | ID: mdl-37720161

ABSTRACT

Geothermal areas represent substantial point sources for greenhouse gas emissions such as methane. While it is known that methanotrophic microorganisms act as a biofilter, decreasing the efflux of methane in most soils to the atmosphere, the diversity and the extent to which methane is consumed by thermophilic microorganisms in geothermal ecosystems has not been widely explored. To determine the extent of biologically mediated methane oxidation at elevated temperatures, we set up 57 microcosms using soils from 14 Aotearoa-New Zealand geothermal fields and show that moderately thermophilic (>40°C) and thermophilic (>60°C) methane oxidation is common across the region. Methane oxidation was detected in 54% (n = 31) of the geothermal soil microcosms tested at temperatures up to 75°C (pH 1.5-8.1), with oxidation rates ranging from 0.5 to 17.4 µmol g-1 d-1 wet weight. The abundance of known aerobic methanotrophs (up to 60.7% Methylacidiphilum and 11.2% Methylothermus) and putative anaerobic methanotrophs (up to 76.7% Bathyarchaeota) provides some explanation for the rapid rates of methane oxidation observed in microcosms. However, not all methane oxidation was attributable to known taxa; in some methane-consuming microcosms we detected methanotroph taxa in conditions outside of their known temperature range for growth, and in other examples, we observed methane oxidation in the absence of known methanotrophs through 16S rRNA gene sequencing. Both of these observations suggest unidentified methane oxidizing microorganisms or undescribed methanotrophic syntrophic associations may also be present. Subsequent enrichment cultures from microcosms yielded communities not predicted by the original diversity studies and showed rates inconsistent with microcosms (≤24.5 µmol d-1), highlighting difficulties in culturing representative thermophilic methanotrophs. Finally, to determine the active methane oxidation processes, we attempted to elucidate metabolic pathways from two enrichment cultures actively oxidizing methane using metatranscriptomics. The most highly expressed genes in both enrichments (methane monooxygenases, methanol dehydrogenases and PqqA precursor peptides) were related to methanotrophs from Methylococcaceae, Methylocystaceae and Methylothermaceae. This is the first example of using metatranscriptomics to investigate methanotrophs from geothermal environments and gives insight into the metabolic pathways involved in thermophilic methanotrophy.

5.
Virology ; 587: 109873, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37647722

ABSTRACT

Little is known about the diversity of RNA viruses in geothermal systems. We generated total RNA sequencing data from two hot springs in Kuirau Park, Rotorua, New Zealand. In one data set, from a 71.8 °C pool, we observed a microbial community that was 98.5% archaea. The second data set, representing a cooler 36.8 °C geothermal hot spring, had a more diverse microbial profile: 58% bacteria, 34.5% eukaryotes and 7.5% archaea. Within this latter pool, we detected sequences likely representing 23 RNA viruses from the families Astroviridae, Tombusviridae, Polycipiviridae, Discistroviridae, Partitiviridae, and Mitoviridae, as well as from unclassified clades of the orders Tolivirales, Picornavirales, and Ghabrivirales. Most viruses had uncertain host associations. Of particular note, we identified four novel RNA viruses from the phylum Lenarviricota, commonly associated with bacteria and fungi, that occupied a divergent phylogenetic position within unclassified clades and may represent an ancient order-level taxon of unknown host association.

6.
Nature ; 618(7967): 992-999, 2023 Jun.
Article in English | MEDLINE | ID: mdl-37316666

ABSTRACT

In the ongoing debates about eukaryogenesis-the series of evolutionary events leading to the emergence of the eukaryotic cell from prokaryotic ancestors-members of the Asgard archaea play a key part as the closest archaeal relatives of eukaryotes1. However, the nature and phylogenetic identity of the last common ancestor of Asgard archaea and eukaryotes remain unresolved2-4. Here we analyse distinct phylogenetic marker datasets of an expanded genomic sampling of Asgard archaea and evaluate competing evolutionary scenarios using state-of-the-art phylogenomic approaches. We find that eukaryotes are placed, with high confidence, as a well-nested clade within Asgard archaea and as a sister lineage to Hodarchaeales, a newly proposed order within Heimdallarchaeia. Using sophisticated gene tree and species tree reconciliation approaches, we show that analogous to the evolution of eukaryotic genomes, genome evolution in Asgard archaea involved significantly more gene duplication and fewer gene loss events compared with other archaea. Finally, we infer that the last common ancestor of Asgard archaea was probably a thermophilic chemolithotroph and that the lineage from which eukaryotes evolved adapted to mesophilic conditions and acquired the genetic potential to support a heterotrophic lifestyle. Our work provides key insights into the prokaryote-to-eukaryote transition and a platform for better understanding the emergence of cellular complexity in eukaryotic cells.


Subject(s)
Archaea , Eukaryota , Phylogeny , Archaea/classification , Archaea/cytology , Archaea/genetics , Eukaryota/classification , Eukaryota/cytology , Eukaryota/genetics , Eukaryotic Cells/classification , Eukaryotic Cells/cytology , Prokaryotic Cells/classification , Prokaryotic Cells/cytology , Datasets as Topic , Gene Duplication , Evolution, Molecular
7.
Front Microbiol ; 14: 1094311, 2023.
Article in English | MEDLINE | ID: mdl-37020721

ABSTRACT

Microbial biogeography studies, in particular for geothermal-associated habitats, have focused on spatial patterns and/or individual sites, which have limited ability to describe the dynamics of ecosystem behaviour. Here, we report the first comprehensive temporal study of bacterial and archaeal communities from an extensive range of geothermal features in Aotearoa-New Zealand. One hundred and fifteen water column samples from 31 geothermal ecosystems were taken over a 34-month period to ascertain microbial community stability (control sites), community response to both natural and anthropogenic disturbances in the local environment (disturbed sites) and temporal variation in spring diversity across different pH values (pH 3, 5, 7, 9) all at a similar temperature of 60-70°C (pH sites). Identical methodologies were employed to measure microbial diversity via 16S rRNA gene amplicon sequencing, along with 44 physicochemical parameters from each feature, to ensure confidence in comparing samples across timeframes. Our results indicated temperature and associated groundwater physicochemistry were the most likely parameters to vary stochastically in these geothermal features, with community abundances rather than composition more readily affected by a changing environment. However, variation in pH (pH ±1) had a more significant effect on community structure than temperature (±20°C), with alpha diversity failing to adequately measure temporal microbial disparity in geothermal features outside of circumneutral conditions. While a substantial physicochemical disturbance was required to shift community structures at the phylum level, geothermal ecosystems were resilient at this broad taxonomic rank and returned to a pre-disturbed state if environmental conditions re-established. These findings highlight the diverse controls between different microbial communities within the same habitat-type, expanding our understanding of temporal dynamics in extreme ecosystems.

8.
Syst Appl Microbiol ; 46(3): 126416, 2023 May.
Article in English | MEDLINE | ID: mdl-36965279

ABSTRACT

Current -omics methods allow the collection of a large amount of information that helps in describing the microbial diversity in nature. Here, and as a result of a culturomic approach that rendered the collection of thousands of isolates from 5 different hypersaline sites (in Spain, USA and New Zealand), we obtained 21 strains that represent two new Salinibacter species. For these species we propose the names Salinibacter pepae sp. nov. and Salinibacter grassmerensis sp. nov. (showing average nucleotide identity (ANI) values < 95.09% and 87.08% with Sal. ruber M31T, respectively). Metabolomics revealed species-specific discriminative profiles. Sal. ruber strains were distinguished by a higher percentage of polyunsaturated fatty acids and specific N-functionalized fatty acids; and Sal. altiplanensis was distinguished by an increased number of glycosylated molecules. Based on sequence characteristics and inferred phenotype of metagenome-assembled genomes (MAGs), we describe two new members of the genus Salinibacter. These species dominated in different sites and always coexisted with Sal. ruber and Sal. pepae. Based on the MAGs from three Argentinian lakes in the Pampa region of Argentina and the MAG of the Romanian lake Fara Fund, we describe the species Salinibacter pampae sp. nov. and Salinibacter abyssi sp. nov. respectively (showing ANI values 90.94% and 91.48% with Sal. ruber M31T, respectively). Sal. grassmerensis sp. nov. name was formed according to the rules of the International Code for Nomenclature of Prokaryotes (ICNP), and Sal. pepae, Sal. pampae sp. nov. and Sal. abyssi sp. nov. are proposed following the rules of the newly published Code of Nomenclature of Prokaryotes Described from Sequence Data (SeqCode). This work constitutes an example on how classification under ICNP and SeqCode can coexist, and how the official naming a cultivated organism for which the deposit in public repositories is difficult finds an intermediate solution.


Subject(s)
Bacteroidetes , Fatty Acids , RNA, Ribosomal, 16S/genetics , Sequence Analysis, DNA , Phylogeny , Fatty Acids/analysis , DNA, Bacterial/genetics , Bacterial Typing Techniques
9.
Microbiol Resour Announc ; 12(2): e0107422, 2023 Feb 16.
Article in English | MEDLINE | ID: mdl-36695581

ABSTRACT

Venenivibrio stagnispumantis strain CP.B2T is a thermophilic, chemolithoautotrophic bacterium from the family Hydrogenothermaceae (phylum Aquificota), isolated from Champagne Pool in the Waiotapu geothermal field, Aotearoa-New Zealand. The genome consists of 1.73 Mbp in 451 contigs with a 30.8 mol% G+C content.

10.
Nat Commun ; 13(1): 3773, 2022 06 30.
Article in English | MEDLINE | ID: mdl-35773279

ABSTRACT

Trace metals have been an important ingredient for life throughout Earth's history. Here, we describe the genome-guided cultivation of a member of the elusive archaeal lineage Caldarchaeales (syn. Aigarchaeota), Wolframiiraptor gerlachensis, and its growth dependence on tungsten. A metagenome-assembled genome (MAG) of W. gerlachensis encodes putative tungsten membrane transport systems, as well as pathways for anaerobic oxidation of sugars probably mediated by tungsten-dependent ferredoxin oxidoreductases that are expressed during growth. Catalyzed reporter deposition-fluorescence in-situ hybridization (CARD-FISH) and nanoscale secondary ion mass spectrometry (nanoSIMS) show that W. gerlachensis preferentially assimilates xylose. Phylogenetic analyses of 78 high-quality Wolframiiraptoraceae MAGs from terrestrial and marine hydrothermal systems suggest that tungsten-associated enzymes were present in the last common ancestor of extant Wolframiiraptoraceae. Our observations imply a crucial role for tungsten-dependent metabolism in the origin and evolution of this lineage, and hint at a relic metabolic dependence on this trace metal in early anaerobic thermophiles.


Subject(s)
Archaea , Tungsten , Anaerobiosis , Archaea/metabolism , Metagenome , Phylogeny
11.
Front Microbiol ; 13: 836943, 2022.
Article in English | MEDLINE | ID: mdl-35591982

ABSTRACT

Mt. Erebus, Antarctica, is the world's southernmost active volcano and is unique in its isolation from other major active volcanic systems and its distinctive geothermal systems. Using 16S rRNA gene amplicon sequencing and physicochemical analyses, we compared samples collected at two contrasting high-temperature (50°C-65°C) sites on Mt. Erebus: Tramway Ridge, a weather-protected high biomass site, and Western Crater, an extremely exposed low biomass site. Samples were collected along three thermal gradients, one from Western Crater and two within Tramway Ridge, which allowed an examination of the heterogeneity present at Tramway Ridge. We found distinct soil compositions between the two sites, and to a lesser extent within Tramway Ridge, correlated with disparate microbial communities. Notably, pH, not temperature, showed the strongest correlation with these differences. The abundance profiles of several microbial groups were different between the two sites; class Nitrososphaeria amplicon sequence variants (ASVs) dominated the community profiles at Tramway Ridge, whereas Acidobacteriotal ASVs were only found at Western Crater. A co-occurrence network, paired with physicochemical analyses, allowed for finer scale analysis of parameters correlated with differential abundance profiles, with various parameters (total carbon, total nitrogen, soil moisture, soil conductivity, sulfur, phosphorous, and iron) showing significant correlations. ASVs assigned to Chloroflexi classes Ktedonobacteria and Chloroflexia were detected at both sites. Based on the known metabolic capabilities of previously studied members of these groups, we predict that chemolithotrophy is a common strategy in this system. These analyses highlight the importance of conducting broader-scale metagenomics and cultivation efforts at Mt. Erebus to better understand this unique environment.

12.
Environ Microbiol ; 23(7): 4034-4053, 2021 07.
Article in English | MEDLINE | ID: mdl-34111905

ABSTRACT

Hot springs integrate hydrologic and geologic processes that vary over short- and long-term time scales. However, the influence of temporal hydrologic and geologic change on hot spring biodiversity is unknown. Here, we coordinated near-weekly, cross-seasonal (~140 days) geochemical and microbial community analyses of three widely studied hot springs with local precipitation data in Yellowstone National Park. One spring ('HFS') exhibited statistically significant, coupled microbial and geochemical variation across seasons that was associated with recent precipitation patterns. Two other spring communities, 'CP' and 'DS', exhibited minimal to no variation across seasons. Variability in the seasonal response of springs is attributed to differences in the timing and extent of aquifer recharge with oxidized near-surface water from precipitation. This influx of oxidized water is associated with changes in community composition, and in particular, the abundances of aerobic sulfide-/sulfur-oxidizers that can acidify waters. During sampling, a new spring formed after a period of heavy precipitation and its successional dynamics were also influenced by surface water recharge. Collectively, these results indicate that changes in short-term hydrology associated with precipitation can impact hot spring geochemistry and microbial biodiversity. These results point to potential susceptibility of certain hot springs and their biodiversity to sustained, longer-term hydrologic changes.


Subject(s)
Hot Springs , Biodiversity , Geology , Hydrology , RNA, Ribosomal, 16S , Seasons
13.
Front Microbiol ; 12: 651744, 2021.
Article in English | MEDLINE | ID: mdl-33841379

ABSTRACT

Members of the genus Methylacidiphilum, a clade of metabolically flexible thermoacidophilic methanotrophs from the phylum Verrucomicrobia, can utilize a variety of substrates including methane, methanol, and hydrogen for growth. However, despite sequentially oxidizing methane to carbon dioxide via methanol and formate intermediates, growth on formate as the only source of reducing equivalents (i.e., NADH) has not yet been demonstrated. In many acidophiles, the inability to grow on organic acids has presumed that diffusion of the protonated form (e.g., formic acid) into the cell is accompanied by deprotonation prompting cytosolic acidification, which leads to the denaturation of vital proteins and the collapse of the proton motive force. In this work, we used a combination of biochemical, physiological, chemostat, and transcriptomic approaches to demonstrate that Methylacidiphilum sp. RTK17.1 can utilize formate as a substrate when cells are able to maintain pH homeostasis. Our findings show that Methylacidiphilum sp. RTK17.1 grows optimally with a circumneutral intracellular pH (pH 6.52 ± 0.04) across an extracellular range of pH 1.5-3.0. In batch experiments, formic acid addition resulted in no observable cell growth and cell death due to acidification of the cytosol. Nevertheless, stable growth on formic acid as the only source of energy was demonstrated in continuous chemostat cultures (D = 0.0052 h-1, td = 133 h). During growth on formic acid, biomass yields remained nearly identical to methanol-grown chemostat cultures when normalized per mole electron equivalent. Transcriptome analysis revealed the key genes associated with stress response: methane, methanol, and formate metabolism were differentially expressed in response to growth on formic acid. Collectively, these results show formic acid represents a utilizable source of energy/carbon to the acidophilic methanotrophs within geothermal environments. Findings expand the known metabolic flexibility of verrucomicrobial methanotrophs to include organic acids and provide insight into potential survival strategies used by these species during methane starvation.

15.
Front Microbiol ; 11: 1848, 2020.
Article in English | MEDLINE | ID: mdl-33013724

ABSTRACT

Recent discoveries suggest that the candidate superphyla Patescibacteria and DPANN constitute a large fraction of the phylogenetic diversity of Bacteria and Archaea. Their small genomes and limited coding potential have been hypothesized to be ancestral adaptations to obligate symbiotic lifestyles. To test this hypothesis, we performed cell-cell association, genomic, and phylogenetic analyses on 4,829 individual cells of Bacteria and Archaea from 46 globally distributed surface and subsurface field samples. This confirmed the ubiquity and abundance of Patescibacteria and DPANN in subsurface environments, the small size of their genomes and cells, and the divergence of their gene content from other Bacteria and Archaea. Our analyses suggest that most Patescibacteria and DPANN in the studied subsurface environments do not form specific physical associations with other microorganisms. These data also suggest that their unusual genomic features and prevalent auxotrophies may be a result of ancestral, minimal cellular energy transduction mechanisms that lack respiration, thus relying solely on fermentation for energy conservation.

16.
Nat Microbiol ; 5(8): 987-994, 2020 08.
Article in English | MEDLINE | ID: mdl-32514073

ABSTRACT

The assembly of single-amplified genomes (SAGs) and metagenome-assembled genomes (MAGs) has led to a surge in genome-based discoveries of members affiliated with Archaea and Bacteria, bringing with it a need to develop guidelines for nomenclature of uncultivated microorganisms. The International Code of Nomenclature of Prokaryotes (ICNP) only recognizes cultures as 'type material', thereby preventing the naming of uncultivated organisms. In this Consensus Statement, we propose two potential paths to solve this nomenclatural conundrum. One option is the adoption of previously proposed modifications to the ICNP to recognize DNA sequences as acceptable type material; the other option creates a nomenclatural code for uncultivated Archaea and Bacteria that could eventually be merged with the ICNP in the future. Regardless of the path taken, we believe that action is needed now within the scientific community to develop consistent rules for nomenclature of uncultivated taxa in order to provide clarity and stability, and to effectively communicate microbial diversity.


Subject(s)
Archaea/classification , Bacteria/classification , Archaea/genetics , Bacteria/genetics , DNA, Bacterial , Metagenome , Phylogeny , Prokaryotic Cells/classification , Sequence Analysis, DNA , Terminology as Topic
17.
Microbiologyopen ; 9(8): e1062, 2020 08.
Article in English | MEDLINE | ID: mdl-32478485

ABSTRACT

We used high-throughput DNA sequencing methods combined with bio-geochemical profiles to characterize the internal environment and community structure of the microbiome of the basidiomycete fungus Pisolithus arhizus (Scop.) Rauschert from soils within a geothermal feature of Yellowstone National Park. Pisolithus arhizus is unique in that it forms closed fruiting bodies that sequester visible sulfur within. Fourier transform infrared spectroscopy (FTIR) analysis demonstrates that the P. arhizus fruiting body also concentrates copper, manganese, nickel, and zinc and contains pure granular silica. Gas chromatography-mass spectrometry (GC-MS) analysis indicates an environment rich in hydrocarbons. Oxygen probe analysis reveals that zones of up to 4× atmospheric oxygen exist within nanometers of zones of near anoxia. Analysis of microbial community structure using high-throughput DNA sequencing methods shows that the fruiting body supports a microbiome that reflects the physiochemical environment of the fruiting body. Diversity and richness measures indicate a microbiome that is significantly richer and more diverse than that of the soils in which P. arhizus grows. Further, P. arhizus sporocarps are enriched significantly in Proteobacteria (primarily Burkholderia) Gemmatimonadetes, Bacteroidetes, Verrucomicrobia, Nitrospirae, Elusimicrobia, and Latescibacteria (WS3) while soils are enriched in Actinobacteria (primarily Mycobacterium), Dormibacteraeota (AD3), and Eremiobacteraeota (WPS-2). Finally, pairwise % similarity comparisons indicate that P. arhizus harbors two lineages that may represent new groups in the candidate phylum radiation (CPR). Together, these results demonstrate that P. arhizus provides a novel environment for microbiome studies and provides for interesting hypotheses regarding the evolution, origins, and functions of symbioses and novel microbes.


Subject(s)
Bacteria/classification , Bacteria/isolation & purification , Basidiomycota/physiology , Fruiting Bodies, Fungal/chemistry , Microbiota/genetics , Bacteria/genetics , Copper/analysis , DNA, Bacterial/genetics , Gas Chromatography-Mass Spectrometry , High-Throughput Nucleotide Sequencing , Hydrocarbons/analysis , Manganese/analysis , Nickel/chemistry , Oxygen/analysis , RNA, Ribosomal, 16S/genetics , Silicon Dioxide/analysis , Soil Microbiology , Spectroscopy, Fourier Transform Infrared , Zinc/analysis
18.
Microbiol Resour Announc ; 9(18)2020 Apr 30.
Article in English | MEDLINE | ID: mdl-32354975

ABSTRACT

Limisphaera ngatamarikiensis NGM72.4T is a thermophilic representative of the class Verrucomicrobiae Isolated from geothermally heated subaqueous clay sediments from a Ngatamariki hotspring in Aotearoa New Zealand, the 3,908,748-bp genome was sequenced using the Illumina HiSeq 2500 platform. Annotation revealed 3,083 coding sequences, including 3,031 proteins, 3 rRNA genes, and 46 tRNA genes.

19.
Appl Environ Microbiol ; 86(15)2020 07 20.
Article in English | MEDLINE | ID: mdl-32414793

ABSTRACT

Geothermal systems emit substantial amounts of aqueous, gaseous, and methylated mercury, but little is known about microbial influences on mercury speciation. Here, we report results from genome-resolved metagenomics and mercury speciation analysis of acidic warm springs in the Ngawha Geothermal Field (<55°C, pH <4.5), Northland Region, Aotearoa New Zealand. Our aim was to identify the microorganisms genetically equipped for mercury methylation, demethylation, or Hg(II) reduction to volatile Hg(0) in these springs. Dissolved total and methylated mercury concentrations in two adjacent springs with different mercury speciation ranked among the highest reported from natural sources (250 to 16,000 ng liter-1 and 0.5 to 13.9 ng liter-1, respectively). Total solid mercury concentrations in spring sediments ranged from 1,274 to 7,000 µg g-1 In the context of such ultrahigh mercury levels, the geothermal microbiome was unexpectedly diverse and dominated by acidophilic and mesophilic sulfur- and iron-cycling bacteria, mercury- and arsenic-resistant bacteria, and thermophilic and acidophilic archaea. By integrating microbiome structure and metagenomic potential with geochemical constraints, we constructed a conceptual model for biogeochemical mercury cycling in geothermal springs. The model includes abiotic and biotic controls on mercury speciation and illustrates how geothermal mercury cycling may couple to microbial community dynamics and sulfur and iron biogeochemistry.IMPORTANCE Little is currently known about biogeochemical mercury cycling in geothermal systems. The manuscript presents a new conceptual model, supported by genome-resolved metagenomic analysis and detailed geochemical measurements. The model illustrates environmental factors that influence mercury cycling in acidic springs, including transitions between solid (mineral) and aqueous phases of mercury, as well as the interconnections among mercury, sulfur, and iron cycles. This work provides a framework for studying natural geothermal mercury emissions globally. Specifically, our findings have implications for mercury speciation in wastewaters from geothermal power plants and the potential environmental impacts of microbially and abiotically formed mercury species, particularly where they are mobilized in spring waters that mix with surface or groundwaters. Furthermore, in the context of thermophilic origins for microbial mercury volatilization, this report yields new insights into how such processes may have evolved alongside microbial mercury methylation/demethylation and the environmental constraints imposed by the geochemistry and mineralogy of geothermal systems.


Subject(s)
Archaea/metabolism , Bacteria/metabolism , Hot Springs/microbiology , Mercury/chemistry , Metagenome , Archaea/genetics , Bacteria/genetics , Mercury/metabolism , Metagenomics , New Zealand
20.
Front Microbiol ; 10: 1873, 2019.
Article in English | MEDLINE | ID: mdl-31474959

ABSTRACT

Metabolic flexibility in aerobic methane oxidizing bacteria (methanotrophs) enhances cell growth and survival in instances where resources are variable or limiting. Examples include the production of intracellular compounds (such as glycogen or polyhydroxyalkanoates) in response to unbalanced growth conditions and the use of some energy substrates, besides methane, when available. Indeed, recent studies show that verrucomicrobial methanotrophs can grow mixotrophically through oxidation of hydrogen and methane gases via respiratory membrane-bound group 1d [NiFe] hydrogenases and methane monooxygenases, respectively. Hydrogen metabolism is particularly important for adaptation to methane and oxygen limitation, suggesting this metabolic flexibility may confer growth and survival advantages. In this work, we provide evidence that, in adopting a mixotrophic growth strategy, the thermoacidophilic methanotroph, Methylacidiphilum sp. RTK17.1 changes its growth rate, biomass yields and the production of intracellular glycogen reservoirs. Under nitrogen-fixing conditions, removal of hydrogen from the feed-gas resulted in a 14% reduction in observed growth rates and a 144% increase in cellular glycogen content. Concomitant with increases in glycogen content, the total protein content of biomass decreased following the removal of hydrogen. Transcriptome analysis of Methylacidiphilum sp. RTK17.1 revealed a 3.5-fold upregulation of the Group 1d [NiFe] hydrogenase in response to oxygen limitation and a 4-fold upregulation of nitrogenase encoding genes (nifHDKENX) in response to nitrogen limitation. Genes associated with glycogen synthesis and degradation were expressed constitutively and did not display evidence of transcriptional regulation. Collectively these data further challenge the belief that hydrogen metabolism in methanotrophic bacteria is primarily associated with energy conservation during nitrogen fixation and suggests its utilization provides a competitive growth advantage within hypoxic habitats.

SELECTION OF CITATIONS
SEARCH DETAIL
...