Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Eur J Nutr ; 62(3): 1441-1451, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36637493

ABSTRACT

PURPOSE: Low vitamin D status is a global problem and has been associated with reduced skeletal and cardiometabolic health. However, evidence in young children is lacking. We, therefore, aimed to characterise vitamin D status in toddlers, identify its determinants, and explore if vitamin D status was associated with bone mineralisation and lipid profile. METHODS: We used cross-sectional data from 3-year-old children (n = 323) living in Denmark (latitude: 55°N). Bone mineralisation (n = 108) was measured by DXA. Blood samples were analysed for serum 25-hydroxyvitamin D (s-25(OH)D) by LC-MS/MS, triacylglycerol, and total, low- and high density lipoprotein cholesterol. RESULTS: Mean ± SD s-25(OH)D was 69 ± 23 nmol/L, but varied with season. During winter, 38% had inadequate s-25(OH)D (< 50 nmol), whereof 15% had deficiency (< 30 nmol/L); these numbers were only 7 and 1% during summer. In terms of status determinants, supplement use (66% were users) was associated with s-25(OH)D (P < 0.001), whereas dietary vitamin D intake (median [25-75th percentile] of 1.3 [0.9-1.9] µg/d), sex, parental education, BMI, and physical activity were not. There were no associations between s-25(OH)D and blood lipids or bone measurements, using either unadjusted or adjusted regression models. CONCLUSION: More than 1/3 of Danish toddlers had inadequate vitamin D intake during winter, but acceptable mean vitamin D status. In addition to season, supplement use was the main determinant of vitamin D status, which was, however, not associated with bone mineralisation or lipid profile. The results support recommendations of vitamin D supplements during winter at northern latitudes, but potential health effects need further investigation.


Subject(s)
Vitamin D Deficiency , Humans , Child, Preschool , Cross-Sectional Studies , Chromatography, Liquid , Vitamin D Deficiency/epidemiology , Tandem Mass Spectrometry , Vitamin D , Vitamins , Dietary Supplements , Calcifediol , Denmark/epidemiology , Seasons
2.
Eur J Nutr ; 61(7): 3613-3623, 2022 10.
Article in English | MEDLINE | ID: mdl-35643873

ABSTRACT

PURPOSE: To investigate separate and combined effects of vitamin D supplementation during the extended winter and increased dairy protein intake on muscle strength and physical function in children, and furthermore to explore potential sex differences. METHODS: In a 2 × 2-factorial, randomized winter trial, 183 healthy, 6-8-year-old children received blinded tablets with 20 µg/day vitamin D3 or placebo, and substituted 260 g/day dairy with yogurts with high (HP, 10 g protein/100 g) or normal protein content (NP, 3.5 g protein/100 g) for 24 weeks during winter at 55° N. We measured maximal isometric handgrip and leg press strength, and physical function by jump tests and a 30 s sit-to-stand test. Physical activity was measured by 7-day accelerometry. RESULTS: Baseline (mean ± SD) serum 25-hydroxyvitamin D was 80.8 ± 17.2 nmol/L, which increased to 88.7 ± 17.6 nmol/L with vitamin D supplementation and decreased to 48.4 ± 19.2 nmol/L with placebo. Baseline protein intake was 15.5 ± 2.4 E%, which increased to 18.4 ± 3.4 E% with HP and was unchanged with NP. We found no separate or combined effects of vitamin D supplementation and/or increased dairy protein intake on muscle strength or physical function (all P > 0.20). There was an interaction on the sit-to-stand test (Pvitamin×yogurt = 0.02), which however disappeared after adjusting for physical activity (P = 0.16). Further, vitamin D supplementation increased leg press strength relatively more in girls compared to boys (mean [95% CI] 158 [17, 299] N; Pvitamin×sex = 0.047). CONCLUSION: Overall, vitamin D and dairy protein supplementation during the extended winter did not affect muscle strength or physical function in healthy children. Potential sex differences of vitamin D supplementation should be investigated further. REGISTERED AT CLINICALTRIALS.GOV: NCT0395673.


Subject(s)
Cholecalciferol , Dietary Supplements , Milk Proteins , Muscle Strength , Vitamin D Deficiency , Child , Cholecalciferol/administration & dosage , Cholecalciferol/pharmacology , Double-Blind Method , Female , Hand Strength/physiology , Humans , Male , Milk Proteins/administration & dosage , Muscle Strength/drug effects , Muscle Strength/physiology , Sex Factors , Vitamin D Deficiency/prevention & control
3.
Am J Clin Nutr ; 115(4): 1080-1091, 2022 04 01.
Article in English | MEDLINE | ID: mdl-35015806

ABSTRACT

BACKGROUND: Increasing evidence suggests that prevention of lifestyle diseases should begin early. Dairy protein and vitamin D can affect body composition and cardiometabolic markers, yet evidence among well-nourished children is sparse. OBJECTIVES: We investigated combined and separate effects of high dairy protein intake and vitamin D on body composition and cardiometabolic markers in children. METHODS: In a 2 × 2-factorial, randomized trial, 200 white, Danish, 6-8-y-old children substituted 260 g/d dairy in their diet with high-protein (HP; 10 g protein/100 g) or normal-protein (NP; 3.5 g protein/100 g) yogurt and received blinded tablets with 20 µg/d vitamin D3 or placebo for 24 wk during winter. We measured body composition (by DXA), blood pressure, and fasting blood glucose, insulin, C-peptide, and lipids. RESULTS: In total, 184 children (92%) completed the study. Baseline median (25th-75th percentile) dairy protein intake was median: 3.7 (25th-75th percentile: 2.5-5.1) energy percentage (E%) and increased to median: 7.2 (25th-75th percentile: 4.7-8.8) E% and median: 4.2 (25th-75th percentile: 3.1-5.3) E% with HP and NP. Mean ± SD serum 25-hydroxyvitamin D concentration changed from 81 ± 17 to 89 ± 18 nmol/L and 48 ± 13 nmol/L with vitamin D and placebo, respectively. There were no combined effects of dairy protein and vitamin D, except for plasma glucose, with the largest increase in the NP-vitamin D group (Pinteraction = 0.005). There were smaller increases in fat mass index (P = 0.04) with HP than with NP, and the same pattern was seen for insulin, HOMA-IR, and C-peptide (all P = 0.06). LDL cholesterol was reduced with vitamin D compared with placebo (P < 0.05). Fat-free mass and blood pressure were unaffected. CONCLUSIONS: High compared with normal dairy protein intake hampered an increase in fat mass index. Vitamin D supplementation counteracted the winter decline in 25-hydroxyvitamin D and the increase in LDL cholesterol observed with placebo. This study adds to the sparse evidence on dairy protein in well-nourished children and supports a vitamin D intake of ∼20 µg/d during winter. This trial was registered at clinicaltrials.gov as NCT03956732.


Subject(s)
Cardiovascular Diseases , Vitamin D Deficiency , Blood Glucose/metabolism , Body Composition , Child , Cholecalciferol , Dietary Supplements , Double-Blind Method , Humans , Vitamin D/pharmacology
4.
Am J Clin Nutr ; 114(6): 1971-1985, 2021 12 01.
Article in English | MEDLINE | ID: mdl-34581765

ABSTRACT

BACKGROUND: Vitamin D and dairy protein may stimulate bone mineralization and linear growth in children, but previous studies show inconsistent results and have not examined their combined effects. OBJECTIVES: To investigate combined and separate effects of vitamin D supplementation and high-protein (HP) compared with normal-protein (NP) yogurt intake on children's bone mineralization and linear growth. METHODS: In a 2 × 2-factorial trial, 200 healthy, 6- to 8-year-old, Danish, children with light skin (55°N) were randomized to 20 µg/d vitamin D3 or placebo and to substitute 260 g/d dairy with HP (10 g protein/100 g) or NP (3.5 g protein/100 g) yogurt for 24 weeks during an extended winter. Outcomes were total body less head (TBLH) and lumbar spine bone mineral density (BMD), bone mineral content (BMC), and bone area (BA) by dual-energy X-ray absorptiometry, height, and biomarkers of bone turnover and growth. The primary outcome was TBLH BMD. RESULTS: In total, 184 children (92%) completed the study. The baseline serum 25-hydroxyvitamin D was 80.8 ± 17.2 nmol/L, which increased by 7.2 ± 14.1 nmol/L and decreased by 32.3 ± 17.5 nmol/L with vitamin D and placebo, respectively. The baseline protein intake was 15.4 ± 2.4 energy percentage (E%), which increased to 18.3 ± 3.4 E% with HP. There were no vitamin D-yogurt interactions and no main effects of either intervention on TBLH BMD. However, vitamin D supplementation increased lumbar spine BMD and TBLH BMC compared to placebo, whereas HP groups showed lower increments in lumbar spine BMD, TBLH BMC and BA, and plasma osteocalcin compared to NP groups. Height, growth factors, and parathyroid hormone levels were unaffected. CONCLUSIONS: Although there were no effects on whole-body BMD, vitamin D increased bone mass and spinal BMD, whereas high compared with normal dairy protein intake had smaller incremental effects on these outcomes. This supports a recommended vitamin D intake of around 20 µg/d during winter but not use of HP dairy products for improved bone mineralization among healthy, well-nourished children. This trial was registered at clinicaltrials.gov as NCT03956732.


Subject(s)
Calcification, Physiologic , Vitamins , Absorptiometry, Photon , Bone Density , Child , Cholecalciferol , Dietary Supplements , Humans , Vitamins/therapeutic use
SELECTION OF CITATIONS
SEARCH DETAIL
...