Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
ACS Synth Biol ; 12(5): 1567-1573, 2023 05 19.
Article in English | MEDLINE | ID: mdl-37146268

ABSTRACT

For cultured meat to succeed at scale, muscle cells from food-relevant species must be expanded in vitro in a rapid and reliable manner to produce millions of metric tons of biomass annually. Toward this goal, genetically immortalized cells offer substantial benefits over primary cells, including rapid growth, escape from cellular senescence, and consistent starting cell populations for production. Here, we develop genetically immortalized bovine satellite cells (iBSCs) via constitutive expression of bovine Telomerase reverse transcriptase (TERT) and Cyclin-dependent kinase 4 (CDK4). These cells achieve over 120 doublings at the time of publication and maintain their capacity for myogenic differentiation. They therefore offer a valuable tool to the field, enabling further research and development to advance cultured meat.


Subject(s)
Cellular Senescence , Telomerase , Animals , Cattle , Cell Line , Cell Differentiation/genetics , Cellular Senescence/genetics , Meat , Cells, Cultured , Telomerase/genetics , Telomerase/metabolism
2.
bioRxiv ; 2023 Apr 17.
Article in English | MEDLINE | ID: mdl-37131805

ABSTRACT

Cultured meat is a promising technology that faces substantial cost barriers which are currently driven largely by the price of media components. Growth factors such as fibroblast growth factor 2 (FGF2) drive the cost of serum-free media for relevant cells including muscle satellite cells. Here, we engineered immortalized bovine satellite cells (iBSCs) for inducible expression of FGF2 and/or mutated RasG12V in order to overcome media growth factor requirements through autocrine signaling. Engineered cells were able to proliferate over multiple passages in FGF2-free medium, thereby eliminating the need for this costly component. Additionally, cells maintained their myogenicity, albeit with reduced differentiation capacity. Ultimately, this offers a proof-of-principle for lower-cost cultured meat production through cell line engineering.

3.
Biomaterials ; 296: 122092, 2023 05.
Article in English | MEDLINE | ID: mdl-36965281

ABSTRACT

The development of cost-effective serum-free media is essential for the economic viability of cultured meat. A key challenge facing this goal is the high-cost of recombinant albumin which is necessary in many serum-free media formulations, including a recently developed serum-free medium for bovine satellite cell (BSC) culture termed Beefy-9. Here we alter Beefy-9 by replacing recombinant albumin with rapeseed protein isolate (RPI), a bulk-protein solution obtained from agricultural waste through alkali extraction (pH 12.5), isoelectric protein precipitation (pH 4.5), dissolution of physiologically soluble proteins (pH 7.2), and concentration of proteins through 3 kDa ultrafiltration. This new medium, termed Beefy-R, was then used to culture BSCs over four passages, during which cells grew with an average doubling time of 26.6 h, showing improved growth compared with Beefy-9. In Beefy-R, BSCs maintained cell phenotype and myogenicity. Together, these results offer an effective, low-cost, and sustainable alternative to albumin for serum-free culture of muscle stem cells, thereby addressing a key hurdle facing cultured meat production.


Subject(s)
Brassica napus , Animals , Cattle , Culture Media, Serum-Free , Cell Culture Techniques/methods , Albumins , Culture Media , Cells, Cultured
4.
Trends Cell Biol ; 33(1): 1-4, 2023 01.
Article in English | MEDLINE | ID: mdl-36372615

ABSTRACT

Cultured meat is an emerging technology that could address environmental, health, and animal welfare concerns associated with meat production. Development of cultured meat represents an exciting challenge for cell biologists and engineers, but it requires effective, open approaches for knowledge sharing to establish a fertile scientific field alongside a competitive industry.


Subject(s)
Animal Welfare , Meat , Animals
5.
Biomaterials ; 287: 121659, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35839585

ABSTRACT

Biomaterial scaffolds are critical components in cultivated meat production for enabling cell adhesion, proliferation, differentiation and orientation. Currently, there is limited information on the fabrication of edible/biodegradable scaffolds for cultivated meat applications. In the present work, several abundant, naturally derived biomaterials (gelatin, soy, glutenin, zein, cellulose, alginate, konjac, chitosan) were fabricated into films without toxic cross-linking or stabilizing agents. These films were investigated for support of the adhesion, proliferation and differentiation of murine and bovine myoblasts. These biomaterials supported cell viability, and the protein-based films showed better cell adhesion than the polysaccharide-based films. Surface patterns induced cell alignment and guided myoblast differentiation and organization on the glutenin and zein films. The mechanical properties of the protein films were also assessed and suggested that a range of properties can be achieved to meet food-related goals. Overall, based on adherence, proliferation, differentiation, mechanics, and material availability, protein-based films, particularly glutenin and zein, showed the most promise for cultivated meat applications. Ultimately, this work presents a comparison of suitable biomaterials for cultivated meat applications and suggests future efforts to optimize scaffolds for efficacy and cost.

6.
Commun Biol ; 5(1): 466, 2022 06 02.
Article in English | MEDLINE | ID: mdl-35654948

ABSTRACT

Cell-cultured meat offers the potential for a more sustainable, ethical, resilient, and healthy food system. However, research and development has been hindered by the lack of serum-free media that enable the robust expansion of relevant cells (e.g., muscle satellite cells) over multiple passages. Recently, a low-cost serum-free media (B8) was described for pluripotent stem cells. Here, B8 is adapted for bovine satellite cells through the addition of a single component, recombinant albumin, which renders it suitable for long-term satellite cell expansion without sacrificing myogenicity. This new media (Beefy-9) maintains cell growth over the entire period tested (seven passages), with an average doubling time of 39 h. Along with demonstrated efficacy for bovine cells, Beefy-9 offers a promising starting-point for developing serum-free media for other meat-relevant species. Ultimately, this work offers a foundation for escaping cultured meat research's reliance on serum, thereby accelerating the field.


Subject(s)
Meat , Myoblasts , Animals , Cattle , Cell Differentiation , Cell Proliferation , Culture Media, Serum-Free
7.
Biomaterials ; 285: 121543, 2022 06.
Article in English | MEDLINE | ID: mdl-35533444

ABSTRACT

Scaffolds suitable for use in food products are crucial components for the production of cultured meat. Here, wheat glutenin, an inexpensive and abundant plant-based protein, was used to develop 3D porous scaffolds for cultured meat applications. A physical cross-linking method based on water annealing was developed for the fabrication of porous glutenin sponges and fibrous aligned scaffolds. The pore sizes ranged from 50 to 250 µm, with compressive modulus ranges from 0.5 to 1.9 kPa, depending on the percentage of glutenin (2%-5%) used in the process. The sponges were stable in PBS with refrigeration for at least six months after water annealing. The glutenin scaffolds supported the proliferation and differentiation of C2C12 mouse skeletal myoblasts and bovine satellite cells (BSCs) without the need to add specific cell adhesive proteins or other coatings. The low cost and food safe production process avoided the use of toxic cross-linkers and animal-derived extracellular matrix (ECM) coatings, suggesting that this as approach is a promising system for scaffolds useful in cultivated meat applications.


Subject(s)
Tissue Scaffolds , Triticum , Animals , Cattle , Cells, Cultured , Extracellular Matrix/metabolism , Glutens , Meat , Mice , Porosity , Tissue Engineering , Water
8.
Biomaterials ; 280: 121273, 2022 01.
Article in English | MEDLINE | ID: mdl-34933254

ABSTRACT

With rising global demand for food proteins and significant environmental impact associated with conventional animal agriculture, it is important to develop sustainable alternatives to supplement existing meat production. Since fat is an important contributor to meat flavor, recapitulating this component in meat alternatives such as plant based and cell cultured meats is important. Here, we discuss the topic of cell cultured or tissue engineered fat, growing adipocytes in vitro that could imbue meat alternatives with the complex flavor and aromas of animal meat. We outline potential paths for the large scale production of in vitro cultured fat, including adipogenic precursors during cell proliferation, methods to adipogenically differentiate cells at scale, as well as strategies for converting differentiated adipocytes into 3D cultured fat tissues. We showcase the maturation of knowledge and technology behind cell sourcing and scaled proliferation, while also highlighting that adipogenic differentiation and 3D adipose tissue formation at scale need further research. We also provide some potential solutions for achieving adipose cell differentiation and tissue formation at scale based on contemporary research and the state of the field.


Subject(s)
Adipocytes , Adipose Tissue , Adipogenesis , Animals , Cell Differentiation , Meat/analysis
9.
Metab Eng ; 62: 126-137, 2020 11.
Article in English | MEDLINE | ID: mdl-32890703

ABSTRACT

Metabolic engineering of mammalian cells has to-date focused primarily on biopharmaceutical protein production or the manipulation of native metabolic processes towards therapeutic aims. However, significant potential exists for expanding these techniques to diverse applications by looking across the taxonomic tree to bioactive metabolites not synthesized in animals. Namely, cross-taxa metabolic engineering of mammalian cells could offer value in applications ranging fromfood and nutrition to regenerative medicine and gene therapy. Towards the former, recent advances in meat production through cell culture suggest the potential to produce meat with fine cellular control, where tuning composition through cross-taxa metabolic engineering could enhance nutrition and food-functionality. Here we demonstrate this possibility by engineering primary bovine and immortalized murine muscle cells with prokaryotic enzymes to endogenously produce the antioxidant carotenoids phytoene, lycopene and ß-carotene. These phytonutrients offer general nutritive value and protective effects against diseases associated with red and processed meat consumption, and so offer a promising proof-of-concept for nutritional engineering in cultured meat. We demonstrate the phenotypic integrity of engineered cells, the ability to tune carotenoid yields, and the antioxidant functionality of these compounds in vitro towards both nutrition and food-quality objectives. Our results demonstrate the potential for tailoring the nutritional profile of cultured meats. They further lay a foundation for heterologous metabolic engineering of mammalian cells for applications outside of the clinical realm.


Subject(s)
Carotenoids , Fermented Foods , Animals , Cattle , Lycopene , Metabolic Engineering , Mice , beta Carotene
10.
Trends Food Sci Technol ; 98: 53-67, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32123465

ABSTRACT

BACKGROUND: In vitro meat production has been proposed as a solution to environmental and animal welfare issues associated with animal agriculture. While most academic work on cell-cultured meat has focused on innovations for scalable muscle tissue culture, fat production is an important and often neglected component of this technology. Developing suitable biomanufacturing strategies for adipose tissue from agriculturally relevant animal species may be particularly beneficial due to the potential use of cell-cultured fat as a novel food ingredient. SCOPE AND APPROACH: Here we review the relevant studies from areas of meat science, cell biology, tissue engineering, and bioprocess engineering to provide a foundation for the development of in vitro fat production systems. We provide an overview of adipose tissue biology and functionality with respect to meat products, then explore cell lines, bioreactors, and tissue engineering strategies of potential utility for in vitro adipose tissue production for food. Regulation and consumer acceptance are also discussed. KEY FINDINGS AND CONCLUSIONS: Existing strategies and paradigms are insufficient to meet the full set of unique needs for a cell-cultured fat manufacturing platform, as tradeoffs are often present between simplicity, scalability, stability, and projected cost. Identification and validation of appropriate cell lines, bioprocess strategies, and tissue engineering techniques must therefore be an iterative process as a deeper understanding of the needs and opportunities for cell-cultured fat develops.

11.
Matrix Biol ; 62: 40-57, 2017 10.
Article in English | MEDLINE | ID: mdl-27856308

ABSTRACT

Aortic valve disease (AVD) is one of the leading causes of cardiovascular mortality. Abnormal expression of hyaluronan (HA) and its synthesizing/degrading enzymes have been observed during latent AVD however, the mechanism of impaired HA homeostasis prior to and after the onset of AVD remains unexplored. Transforming growth factor beta (TGFß) pathway defects and biomechanical dysfunction are hallmarks of AVD, however their association with altered HA regulation is understudied. Expression of HA homeostatic markers was evaluated in diseased human aortic valves and TGFß1-cultured porcine aortic valve tissues using histology, immunohistochemistry and Western blotting. Further, porcine valve interstitial cell cultures were stretched (using Flexcell) and simultaneously treated with exogenous TGFß1±inhibitors for activated Smad2/3 (SB431542) and ERK1/2 (U0126) pathways, and differential HA regulation was assessed using qRT-PCR. Pathological heavy chain HA together with abnormal regional expression of the enzymes HAS2, HYAL1, KIAA1199, TSG6 and IαI was demonstrated in calcified valve tissues identifying the collapse of HA homeostatic machinery during human AVD. Heightened TSG6 activity likely preceded the end-stage of disease, with the existence of a transitional, pre-calcific phase characterized by HA dysregulation. TGFß1 elicited a fibrotic remodeling response in porcine aortic valves similar to human disease pathology, with increased collagen and HYAL to HAS ratio, and site-specific abnormalities in the expression of CD44 and RHAMM receptors. Further in these porcine valves, expression of HAS2 and HYAL1 was found to be differentially regulated by the Smad2/3 and ERK1/2 pathways, and CD44 expression was highly responsive to biomechanical strain. Leveraging the regulatory pathways that control both HA maintenance in normal valves and early postnatal dysregulation of HA homeostasis during disease may identify new mechanistic insight into AVD pathogenesis.


Subject(s)
Aortic Valve/metabolism , Gene Regulatory Networks , Heart Valve Diseases/genetics , Hyaluronic Acid/metabolism , Transforming Growth Factor beta1/metabolism , Adolescent , Aged , Animals , Aortic Valve/cytology , Benzamides/pharmacology , Butadienes/pharmacology , Cell Adhesion Molecules/genetics , Cells, Cultured , Dioxoles/pharmacology , Disease Models, Animal , Gene Regulatory Networks/drug effects , Heart Valve Diseases/metabolism , Homeostasis , Humans , Middle Aged , Nitriles/pharmacology , Swine , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...