Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Nat Cancer ; 2(10): 1002-1017, 2021 10.
Article in English | MEDLINE | ID: mdl-34790902

ABSTRACT

DNA methylation, a key epigenetic driver of transcriptional silencing, is universally dysregulated in cancer. Reversal of DNA methylation by hypomethylating agents, such as the cytidine analogs decitabine or azacytidine, has demonstrated clinical benefit in hematologic malignancies. These nucleoside analogs are incorporated into replicating DNA where they inhibit DNA cytosine methyltransferases DNMT1, DNMT3A and DNMT3B through irreversible covalent interactions. These agents induce notable toxicity to normal blood cells thus limiting their clinical doses. Herein we report the discovery of GSK3685032, a potent first-in-class DNMT1-selective inhibitor that was shown via crystallographic studies to compete with the active-site loop of DNMT1 for penetration into hemi-methylated DNA between two CpG base pairs. GSK3685032 induces robust loss of DNA methylation, transcriptional activation and cancer cell growth inhibition in vitro. Due to improved in vivo tolerability compared with decitabine, GSK3685032 yields superior tumor regression and survival mouse models of acute myeloid leukemia.


Subject(s)
Azacitidine , Leukemia, Myeloid, Acute , Animals , Azacitidine/pharmacology , DNA/metabolism , DNA Methylation , DNA Modification Methylases/genetics , Decitabine/pharmacology , Leukemia, Myeloid, Acute/drug therapy , Mice
2.
Haematologica ; 106(7): 1979-1987, 2021 07 01.
Article in English | MEDLINE | ID: mdl-32586904

ABSTRACT

Pharmacological induction of fetal hemoglobin (HbF) expression is an effective therapeutic strategy for the management of beta-hemoglobinopathies such as sickle cell disease. DNA methyltransferase (DNMT) inhibitors 5-azacytidine (5-aza) and 5-aza-2'-deoxycytidine (decitabine) have been shown to induce fetal hemoglobin expression in both preclinical models and clinical studies, but are not currently approved for the management of hemoglobinopathies. We report here the discovery of a novel class of orally bioavailable DNMT1-selective inhibitors as exemplified by GSK3482364. This molecule potently inhibits the methyltransferase activity of DNMT1, but not DNMT family members DNMT3A or DNMT3B. In contrast with cytidine analog DNMT inhibitors, the DNMT1 inhibitory mechanism of GSK3482364 does not require DNA incorporation and is reversible. In cultured human erythroid progenitor cells (EPCs), GSK3482364 decreased overall DNA methylation resulting in de-repression of the gamma globin genes HBG1 and HBG2 and increased HbF expression. In a transgenic mouse model of sickle cell disease, orally administered GSK3482364 caused significant increases in both HbF levels and in the percentage HbF-expressing erythrocytes, with good overall tolerability. We conclude that in these preclinical models, selective, reversible inhibition of DNMT1 is sufficient for the induction of HbF, and is well-tolerated. We anticipate that GSK3482364 will be a useful tool molecule for the further study of selective DNMT1 inhibition both in vitro and in vivo.


Subject(s)
Anemia, Sickle Cell , Fetal Hemoglobin , Anemia, Sickle Cell/drug therapy , Anemia, Sickle Cell/genetics , Animals , Azacitidine/pharmacology , DNA Methylation , Fetal Hemoglobin/genetics , Mice , gamma-Globins/genetics
3.
Bioorg Med Chem Lett ; 29(4): 560-562, 2019 02 15.
Article in English | MEDLINE | ID: mdl-30616904

ABSTRACT

Fluorination of metabolic hotspots in a molecule is a common medicinal chemistry strategy to improve in vivo half-life and exposure and, generally, this strategy offers significant benefits. Here, we report the application of this strategy to a series of poly-ADP ribose glycohydrolase (PARG) inhibitors, resulting in unexpected in vivo toxicity which was attributed to this single-atom modification.


Subject(s)
Cyclopropanes/pharmacology , Glycoside Hydrolases/toxicity , Microsomes, Liver/drug effects , Administration, Oral , Animals , Cyclopropanes/administration & dosage , Cyclopropanes/chemistry , Cyclopropanes/pharmacokinetics , Glycoside Hydrolases/administration & dosage , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/pharmacokinetics , Half-Life , Humans , Mice , Microsomes, Liver/metabolism
4.
J Med Chem ; 61(23): 10767-10792, 2018 12 13.
Article in English | MEDLINE | ID: mdl-30403352

ABSTRACT

DNA damage repair enzymes are promising targets in the development of new therapeutic agents for a wide range of cancers and potentially other diseases. The enzyme poly(ADP-ribose) glycohydrolase (PARG) plays a pivotal role in the regulation of DNA repair mechanisms; however, the lack of potent drug-like inhibitors for use in cellular and in vivo models has limited the investigation of its potential as a novel therapeutic target. Using the crystal structure of human PARG in complex with the weakly active and cytotoxic anthraquinone 8a, novel quinazolinedione sulfonamides PARG inhibitors have been identified by means of structure-based virtual screening and library design. 1-Oxetan-3-ylmethyl derivatives 33d and 35d were selected for preliminary investigations in vivo. X-ray crystal structures help rationalize the observed structure-activity relationships of these novel inhibitors.


Subject(s)
DNA Repair , Drug Design , Glycoside Hydrolase Inhibitors/chemistry , Glycoside Hydrolase Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , Quinazolinones/chemistry , Quinazolinones/pharmacology , Administration, Oral , Animals , Biological Availability , Catalytic Domain , Glycoside Hydrolase Inhibitors/administration & dosage , Glycoside Hydrolase Inhibitors/pharmacokinetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/metabolism , HeLa Cells , Humans , Male , Mice , Models, Molecular , Quinazolinones/administration & dosage , Quinazolinones/pharmacokinetics , Structure-Activity Relationship
5.
ACS Chem Biol ; 11(11): 3179-3190, 2016 11 18.
Article in English | MEDLINE | ID: mdl-27689388

ABSTRACT

The enzyme poly(ADP-ribose) glycohydrolase (PARG) performs a critical role in the repair of DNA single strand breaks (SSBs). However, a detailed understanding of its mechanism of action has been hampered by a lack of credible, cell-active chemical probes. Herein, we demonstrate inhibition of PARG with a small molecule, leading to poly(ADP-ribose) (PAR) chain persistence in intact cells. Moreover, we describe two advanced, and chemically distinct, cell-active tool compounds with convincing on-target pharmacology and selectivity. Using one of these tool compounds, we demonstrate pharmacology consistent with PARG inhibition. Further, while the roles of PARG and poly(ADP-ribose) polymerase (PARP) are closely intertwined, we demonstrate that the pharmacology of a PARG inhibitor differs from that observed with the more thoroughly studied PARP inhibitor olaparib. We believe that these tools will facilitate a wider understanding of this important component of DNA repair and may enable the development of novel therapeutic agents exploiting the critical dependence of tumors on the DNA damage response (DDR).


Subject(s)
DNA Repair , Glycoside Hydrolases/chemistry , Molecular Probes/chemistry , Phthalazines/pharmacology , Piperazines/pharmacology , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/antagonists & inhibitors , HeLa Cells , Humans , Surface Plasmon Resonance
6.
Bioorg Med Chem Lett ; 26(22): 5403-5410, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27780639

ABSTRACT

The autotaxin-lysophosphatidic acid (ATX-LPA) axis has been implicated in several disease conditions including inflammation, fibrosis and cancer. This makes ATX an attractive drug target and its inhibition may lead to useful therapeutic agents. Through a high throughput screen (HTS) we identified a series of small molecule inhibitors of ATX which have subsequently been optimized for potency, selectivity and developability properties. This has delivered drug-like compounds such as 9v (CRT0273750) which modulate LPA levels in plasma and are suitable for in vivo studies. X-ray crystallography has revealed that these compounds have an unexpected binding mode in that they do not interact with the active site zinc ions but instead occupy the hydrophobic LPC pocket extending from the active site of ATX together with occupying the LPA 'exit' channel.


Subject(s)
Enzyme Inhibitors/chemistry , Enzyme Inhibitors/pharmacology , Lysophospholipase/antagonists & inhibitors , Lysophospholipids/metabolism , Phosphoric Diester Hydrolases/metabolism , Animals , Antineoplastic Agents/chemistry , Antineoplastic Agents/pharmacokinetics , Antineoplastic Agents/pharmacology , Crystallography, X-Ray , Enzyme Inhibitors/pharmacokinetics , Humans , Lysophospholipase/metabolism , Mice , Molecular Docking Simulation , Molecular Targeted Therapy , Neoplasms/drug therapy , Neoplasms/enzymology , Pyridines/chemistry , Pyridines/pharmacokinetics , Pyridines/pharmacology
7.
Anal Biochem ; 503: 58-64, 2016 06 15.
Article in English | MEDLINE | ID: mdl-27036617

ABSTRACT

Poly(ADP-ribose) (PAR) polymers are transient post-translational modifications, and their formation is catalyzed by poly(ADP-ribose) polymerase (PARP) enzymes. A number of PARP inhibitors are in advanced clinical development for BRCA-mutated breast cancer, and olaparib has recently been approved for BRCA-mutant ovarian cancer; however, there has already been evidence of developed resistance mechanisms. Poly(ADP-ribose) glycohydrolase (PARG) catalyzes the hydrolysis of the endo- and exo-glycosidic bonds within the PAR polymers. As an alternative strategy, PARG is a potentially attractive therapeutic target. There is only one PARG gene, compared with 17 known PARP family members, and therefore a PARG inhibitor may have wider application with fewer compensatory mechanisms. Prior to the initiation of this project, there were no known existing cell-permeable small molecule PARG inhibitors for use as tool compounds to assess these hypotheses and no suitable high-throughput screening (HTS)-compatible biochemical assays available to identify start points for a drug discovery project. The development of this newly described high-throughput homogeneous time-resolved fluorescence (HTRF) assay has allowed HTS to proceed and, from this, the identification and advancement of multiple validated series of tool compounds for PARG inhibition.


Subject(s)
Fluorescence , Glycoside Hydrolases/metabolism , High-Throughput Screening Assays/methods , Luminescent Measurements/methods , Cell Line , Enzyme Inhibitors/pharmacology , Glycoside Hydrolases/analysis , Glycoside Hydrolases/antagonists & inhibitors , Humans , Structure-Activity Relationship , Time Factors
8.
Eur J Med Chem ; 112: 20-32, 2016 Apr 13.
Article in English | MEDLINE | ID: mdl-26874741

ABSTRACT

Deregulation of the receptor tyrosine kinase RET has been implicated in medullary thyroid cancer, a small percentage of lung adenocarcinomas, endocrine-resistant breast cancer and pancreatic cancer. There are several clinically approved multi-kinase inhibitors that target RET as a secondary pharmacology but additional activities, most notably inhibition of KDR, lead to dose-limiting toxicities. There is, therefore, a clinical need for more specific RET kinase inhibitors. Herein we report our efforts towards identifying a potent and selective RET inhibitor using vandetanib 1 as the starting point for structure-based drug design. Phenolic anilinoquinazolines exemplified by 6 showed improved affinities towards RET but, unsurprisingly, suffered from high metabolic clearance. Efforts to mitigate the metabolic liability of the phenol led to the discovery that a flanking substituent not only improved the hepatocyte stability, but could also impart a significant gain in selectivity. This culminated in the identification of 36; a potent RET inhibitor with much improved selectivity against KDR.


Subject(s)
Piperidines/chemistry , Piperidines/pharmacology , Protein Kinase Inhibitors/chemistry , Protein Kinase Inhibitors/pharmacology , Proto-Oncogene Proteins c-ret/antagonists & inhibitors , Quinazolines/chemistry , Quinazolines/pharmacology , Animals , Cell Line , Drug Design , Humans , Mice , Molecular Docking Simulation , Piperidines/pharmacokinetics , Protein Kinase Inhibitors/pharmacokinetics , Proto-Oncogene Proteins c-ret/metabolism , Quinazolines/pharmacokinetics
SELECTION OF CITATIONS
SEARCH DETAIL