Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
J Med Chem ; 65(5): 4255-4269, 2022 03 10.
Article in English | MEDLINE | ID: mdl-35188371

ABSTRACT

Gallinamide A, a metabolite of the marine cyanobacterium Schizothrix sp., selectively inhibits cathepsin L-like cysteine proteases. We evaluated the potency of gallinamide A and 23 synthetic analogues against intracellular Trypanosoma cruzi amastigotes and the cysteine protease, cruzain. We determined the co-crystal structures of cruzain with gallinamide A and two synthetic analogues at ∼2 Å. SAR data revealed that the N-terminal end of gallinamide A is loosely bound and weakly contributes in drug-target interactions. At the C-terminus, the intramolecular π-π stacking interactions between the aromatic substituents at P1' and P1 restrict the bioactive conformation of the inhibitors, thus minimizing the entropic loss associated with target binding. Molecular dynamics simulations showed that in the absence of an aromatic group at P1, the substituent at P1' interacts with tryptophan-184. The P1-P1' interactions had no effect on anti-cruzain activity, whereas anti-T. cruzi potency increased by ∼fivefold, likely due to an increase in solubility/permeability of the analogues.


Subject(s)
Cysteine Proteases , Trypanosoma cruzi , Antimicrobial Cationic Peptides/chemistry , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Protozoan Proteins
2.
J Med Chem ; 65(4): 2956-2970, 2022 02 24.
Article in English | MEDLINE | ID: mdl-34730959

ABSTRACT

Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is a promising drug target for novel antivirals against SARS-CoV-2. The marine natural product gallinamide A and several synthetic analogues were identified as potent inhibitors of cathepsin L with IC50 values in the picomolar range. Lead molecules possessed selectivity over other cathepsins and alternative host proteases involved in viral entry. Gallinamide A directly interacted with cathepsin L in cells and, together with two lead analogues, potently inhibited SARS-CoV-2 infection in vitro, with EC50 values in the nanomolar range. Reduced antiviral activity was observed in cells overexpressing transmembrane protease, serine 2 (TMPRSS2); however, a synergistic improvement in antiviral activity was achieved when combined with a TMPRSS2 inhibitor. These data highlight the potential of cathepsin L as a COVID-19 drug target as well as the likely need to inhibit multiple routes of viral entry to achieve efficacy.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Antiviral Agents/pharmacology , Biological Products/pharmacology , COVID-19 Drug Treatment , Cathepsin L/antagonists & inhibitors , Cysteine Proteinase Inhibitors/pharmacology , SARS-CoV-2/drug effects , A549 Cells , Animals , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antiviral Agents/chemical synthesis , Antiviral Agents/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , COVID-19/metabolism , Cathepsin L/metabolism , Chlorocebus aethiops , Cysteine Proteinase Inhibitors/chemical synthesis , Cysteine Proteinase Inhibitors/chemistry , Dose-Response Relationship, Drug , Humans , Microbial Sensitivity Tests , Molecular Conformation , Proteomics , Structure-Activity Relationship , Vero Cells
3.
J Med Chem ; 64(23): 17326-17345, 2021 12 09.
Article in English | MEDLINE | ID: mdl-34845906

ABSTRACT

Herein, we report the design and synthesis of inhibitors of Mycobacterium tuberculosis (Mtb) phospho-MurNAc-pentapeptide translocase I (MurX), the first membrane-associated step of peptidoglycan synthesis, leveraging the privileged structure of the sansanmycin family of uridylpeptide natural products. A number of analogues bearing hydrophobic amide modifications to the pseudo-peptidic end of the natural product scaffold were generated that exhibited nanomolar inhibitory activity against Mtb MurX and potent activity against Mtb in vitro. We show that a lead analogue bearing an appended neopentylamide moiety possesses rapid antimycobacterial effects with a profile similar to the frontline tuberculosis drug isoniazid. This molecule was also capable of inhibiting Mtb growth in macrophages where mycobacteria reside in vivo and reduced mycobacterial burden in an in vivo zebrafish model of tuberculosis.


Subject(s)
Bacterial Proteins/antagonists & inhibitors , Enzyme Inhibitors/pharmacology , Mycobacterium tuberculosis/enzymology , Oligopeptides/pharmacology , Transferases (Other Substituted Phosphate Groups)/antagonists & inhibitors , Uridine/analogs & derivatives , Animals , Antitubercular Agents/pharmacology , Bacterial Proteins/chemistry , Enzyme Inhibitors/chemistry , Hydrophobic and Hydrophilic Interactions , Mycobacterium tuberculosis/drug effects , Mycobacterium tuberculosis/growth & development , Oligopeptides/chemistry , Transferases (Other Substituted Phosphate Groups)/chemistry , Uridine/chemistry , Uridine/pharmacology , Zebrafish
4.
bioRxiv ; 2020 Dec 24.
Article in English | MEDLINE | ID: mdl-33398273

ABSTRACT

The emergence of SARS-CoV-2 in late 2019, and the subsequent COVID-19 pandemic, has led to substantial mortality, together with mass global disruption. There is an urgent need for novel antiviral drugs for therapeutic or prophylactic application. Cathepsin L is a key host cysteine protease utilized by coronaviruses for cell entry and is recognized as a promising drug target. The marine natural product, gallinamide A and several synthetic analogues, were identified as potent inhibitors of cathepsin L activity with IC 50 values in the picomolar range. Lead molecules possessed selectivity over cathepsin B and other related human cathepsin proteases and did not exhibit inhibitory activity against viral proteases Mpro and PLpro. We demonstrate that gallinamide A and two lead analogues potently inhibit SARS-CoV-2 infection in vitro , with EC 50 values in the nanomolar range, thus further highlighting the potential of cathepsin L as a COVID-19 antiviral drug target.

5.
J Med Chem ; 62(11): 5562-5578, 2019 06 13.
Article in English | MEDLINE | ID: mdl-31062592

ABSTRACT

A library of analogues of the cyanobacterium-derived depsipeptide natural product gallinamide A were designed and prepared using a highly efficient and convergent synthetic route. Analogues were shown to exhibit potent inhibitory activity against the Plasmodium falciparum cysteine proteases falcipain 2 and falcipain 3 and against cultured chloroquine-sensitive (3D7) and chloroquine-resistant (W2) strains of P. falciparum. Three lead compounds were selected for evaluation of in vivo efficacy against Plasmodium berghei infection in mice on the basis of their improved blood, plasma, and microsomal stability profiles compared with the parent natural product. One of the lead analogues cured P. berghei-infected mice in the Peters 4 day-suppressive test when administered 25 mg kg-1 intraperitoneally daily for 4 days. The compound was also capable of clearing parasites in established infections at 50 mg kg-1 intraperitoneally daily for 4 days and exhibited moderate activity when administered as four oral doses of 100 mg kg-1.


Subject(s)
Antimalarials/chemistry , Antimalarials/pharmacology , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Cysteine Endopeptidases/metabolism , Cysteine Proteinase Inhibitors/chemistry , Cysteine Proteinase Inhibitors/pharmacology , Animals , Female , Inhibitory Concentration 50 , Mice , Plasmodium falciparum/drug effects , Plasmodium falciparum/enzymology
6.
J Nat Prod ; 76(2): 275-8, 2013 Feb 22.
Article in English | MEDLINE | ID: mdl-23369033

ABSTRACT

The alkaloid (-)-tylophorine was isolated from a sample of Tylophora indica, and the crude extract was analyzed by HPLC/MS(n) and chiral HPLC/MS. While the literature states that the naturally occurring form of this alkaloid is the R-enantiomer and that its S-antipode is usually not found in nature, we confirmed the hypothesis of Govindachari and Nagarajan that natural levorotatory tylophorine is indeed a nearly racemic mixture with a slight excess of the R-enantiomer.


Subject(s)
Alkaloids/chemistry , Indolizines/chemistry , Phenanthrolines/chemistry , Tylophora/chemistry , Molecular Structure , Phenanthrenes
7.
J Org Chem ; 77(15): 6620-3, 2012 Aug 03.
Article in English | MEDLINE | ID: mdl-22783990

ABSTRACT

The Stevens rearrangement of a nitrile-stabilized ammonium ylide is the key step of a very short and practical synthesis of the phenanthroindolizine alkaloid (±)-tylophorine. The method requires only five linear steps and is devoid of any protecting group manipulations.


Subject(s)
Alkaloids/chemical synthesis , Indolizines/chemical synthesis , Nitriles/chemistry , Phenanthrenes/chemical synthesis , Quaternary Ammonium Compounds/chemistry , Alkaloids/chemistry , Indolizines/chemistry , Molecular Structure , Phenanthrenes/chemistry
8.
Org Lett ; 12(9): 2140-1, 2010 May 07.
Article in English | MEDLINE | ID: mdl-20377275

ABSTRACT

The phenanthroindolizidine alkaloid (S)-(+)-tylophorine was synthesized from L-proline in nine linear steps including a double bromination and a free-radical cyclization of an N-aziridinylimine as the key steps. The phenanthrene moiety was prepared from homoveratric acid and veratraldehyde and permits the variation of each oxygen-substituted ring.


Subject(s)
Alkaloids/chemical synthesis , Indolizines/chemical synthesis , Phenanthrenes/chemical synthesis , Proline/chemistry , Cyclization , Stereoisomerism
9.
Acta Crystallogr Sect E Struct Rep Online ; 66(Pt 12): o3343, 2010 Nov 27.
Article in English | MEDLINE | ID: mdl-21589615

ABSTRACT

The crystal structure of the title compound, C(21)H(22)N(2)O(2)S, shows a network of N-H⋯N and N-H⋯O hydrogen bonds. The tolyl and 1-phenyl rings are almost mutually coplanar [7.89 (9)°], while the 2-phenyl ring makes a dihedral angle of 50.8 (1) ° with the 1-phenyl ring. An intra-molecular N-H⋯N hydrogen bond stabilizes the mol-ecular conformation.

10.
Angew Chem Int Ed Engl ; 48(12): 2228-30, 2009.
Article in English | MEDLINE | ID: mdl-19199304

ABSTRACT

An animalic note: The first total synthesis of the all-cis nupharamine 2, an alkaloid from beaver castoreum, is based on the stereoselective domino Mannich-Michael reaction of N-galactosylfurylaldimine to give 1 (Piv = pivaloyl), subsequent conjugate cuprate addition, and stereoselective protonation of the enolate. These reactions are all controlled by the carbohydrate. Protonation of the enolate after cleavage of the auxiliary leads to epimer 3.


Subject(s)
Alkaloids/chemical synthesis , Furans/chemical synthesis , Piperidines/chemical synthesis , Alkaloids/chemistry , Animals , Furans/chemistry , Indolizidines/chemistry , Piperidines/chemistry , Rodentia , Scent Glands , Stereoisomerism , Terpenes/chemistry
SELECTION OF CITATIONS
SEARCH DETAIL
...