Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Sci Rep ; 13(1): 6646, 2023 04 24.
Article in English | MEDLINE | ID: mdl-37095138

ABSTRACT

Bioactive glass (BAG) is a bone substitute that can be used in orthopaedic surgery. Following implantation, the BAG is expected to be replaced by bone via bone growth and gradual degradation of the BAG. However, the hydroxyapatite mineral forming on BAG resembles bone mineral, not providing sufficient contrast to distinguish the two in X-ray images. In this study, we co-registered coded-excitation scanning acoustic microscopy (CESAM), scanning white light interferometry (SWLI), and scanning electron microscopy with elemental analysis (Energy Dispersive X-ray Spectroscopy) (SEM-EDX) to investigate the bone growth and BAG reactions on a micron scale in a rabbit bone ex vivo. The acoustic impedance map recorded by the CESAM provides high elasticity-associated contrast to study materials and their combinations, while simultaneously producing a topography map of the sample. The acoustic impedance map correlated with the elemental analysis from SEM-EDX. SWLI also produces a topography map, but with higher resolution than CESAM. The two topography maps (CESAM and SWLI) were in good agreement. Furthermore, using information from both maps simultaneously produced by the CESAM (acoustic impedance and topography) allowed determining regions-of-interest related to bone formation around the BAG with greater ease than from either map alone. CESAM is therefore a promising tool for evaluating the degradation of bone substitutes and the bone healing process ex vivo.


Subject(s)
Bone Substitutes , Microscopy, Acoustic , Animals , Rabbits , Bone Substitutes/chemistry , Glass/chemistry , Osteogenesis , Interferometry , Microscopy, Electron, Scanning
2.
J Biomed Mater Res B Appl Biomater ; 107(3): 847-857, 2019 04.
Article in English | MEDLINE | ID: mdl-30194906

ABSTRACT

The two-stage induced-membrane (IM) technique is increasingly used for treatment of large bone defects. In stage one, the bone defect is filled with polymethylmethacrylate (PMMA), which induces a membrane around the implant. In stage two, PMMA is replaced with bone graft. Bioactive glasses (BAGs) are bone substitutes with bone-stimulating and angiogenic properties. We have previously shown that a certain type of BAG can also induce a foreign-body membrane similar to PMMA. The aim of this study was to evaluate the bone-forming capacity of sintered BAG-S53P4 and poly(lactide-co-glycolide) (PLGA)-coated BAG-S53P4 scaffolds for potential use as bone substitutes in a single-stage IM technique. Sintered porous rods of BAG-S53P4, BAG-S53P4-PLGA, or PMMA were implanted in rabbit femurs for 2, 4, or 8 weeks. The expression of bone morphogenic protein (BMP)-2, -4, and -7 in the IMs of implanted materials were analyzed with real-time quantitative polymerase chain reaction. Micro-computed tomography imaging was used to evaluate bone growth and further verified with scanning electron microscopy. BAG-S53P4 and BAG-S53P4-PGLA scaffold IMs show similar or superior expression of BMP-2, -4, and -7 compared with PMMA IM. Bone ingrowth into BAG scaffolds increased over time. Active bone formation occurred inside the BAG scaffolds and the respective BMP expressions were similar or superior for the BAG IMs compared with PMMA, thus making BAGs a promising device for single-stage treatment of bone defects. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res B Part B: Appl Biomater, 2018. © 2018 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater 107B: 847-857, 2019.


Subject(s)
Bone Morphogenetic Proteins/biosynthesis , Bone Substitutes , Gene Expression Regulation/drug effects , Glass/chemistry , Implants, Experimental , Osteogenesis , Animals , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Rabbits
SELECTION OF CITATIONS
SEARCH DETAIL
...