Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 41
Filter
1.
Biofilm ; 6: 100151, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-37662850

ABSTRACT

Bacterial biofilms account for up to 80% of all infections and complicate successful therapies due to their intrinsic tolerance to antibiotics. Biofilms also cause serious problems in the industrial sectors, for instance due to the deterioration of metals or microbial contamination of products. Efforts are put in finding novel strategies in both avoiding and fighting biofilms. Biofilm control is achieved by killing and/or removing biofilm or preventing transition to the biofilm lifestyle. Previous research reported on the anti-biofilm potency of α,α-disubstituted ß-amino amides A1, A2 and A3, which are small antimicrobial peptidomimetics with a molecular weight below 500 Da. In the current study it was investigated if these derivatives cause a fast disintegration of biofilm bacteria and removal of Staphylococcus aureus biofilms. One hour incubation of biofilms with all three derivatives resulted in reduced metabolic activity and membrane permeabilization in S. aureus (ATCC 25923) biofilms. Bactericidal properties of these derivatives were attributed to a direct effect on membranes of biofilm bacteria. The green fluorescence protein expressing Staphylococcus aureus strain AH2547 was cultivated in a CDC biofilm reactor and utilized for disinfectant efficacy testing of A3, following the single tube method (American Society for Testing and Materials designation number E2871). A3 at a concentration of 90 µM acted as fast as 100 µM chlorhexidine and was equally effective. Confocal laser scanning microscopy studies showed that chlorhexidine treatment lead to fluorescence fading indicating membrane permeabilization but did not cause biomass removal. In contrast, A3 treatment caused a simultaneous biofilm fluorescence loss and biomass removal. These dual anti-biofilm properties make α,α-disubstituted ß-amino amides promising scaffolds in finding new control strategies against recalcitrant biofilms.

2.
J Mater Chem B ; 11(33): 7972-7985, 2023 08 24.
Article in English | MEDLINE | ID: mdl-37505112

ABSTRACT

Nucleic acid-based materials showcase an increasing potential for antimicrobial drug delivery. Although numerous reports on drug-loaded DNA nanoparticles outline their pivotal antibacterial activities, their potential as drug delivery systems against bacterial biofilms awaits further studies. Among different oligonucleotide structures, micellar nanocarriers derived from amphiphilic DNA strands are of particular interest due to their spontaneous self-assembly and high biocompatibility. However, their clinical use is hampered by structural instability upon cation depletion. In this work, we used a cationic amphiphilic antibiotic (polymyxin B) to stabilize DNA micelles destined to penetrate P. aeruginosa biofilms and exhibit antibacterial/antibiofilm properties. Our study highlights how the strong affinity of this antibiotic enhances the stability of the micelles and confirms that antibacterial activity of the novel micelles remains intact. Additionally, we show that PMB micelles can penetrate P. aeruginosa biofilms and impact their metabolic activity. Finally, PMB micelles were highly safe and biocompatible, highlighting their possible application against P. aeruginosa biofilm-colonized skin wounds.


Subject(s)
Micelles , Polymyxin B , Pseudomonas aeruginosa , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Biofilms , DNA
3.
Front Pharmacol ; 14: 1141669, 2023.
Article in English | MEDLINE | ID: mdl-37063262

ABSTRACT

The incidence of head and neck squamous cell carcinoma (HNSCC) is increasing and the conventional treatments for this form of cancer can be tough. Despite the success of existing immunotherapies in some HNSCC patients, many do not respond to this type of treatment. Thus, the development of novel anti-cancer therapies should be prioritized. In the current study, the anticancer activity of a panel of novel compounds, herein termed marine product mimics (MPMs), against HNSCC cell lines is explored. The previously reported compound MPM-1, which is structurally related to the novel MPMs, was shown to have promising effects on the HNSCC cell line HSC-3. The results from the current study indicate that the novel MPMs are more potent than MPM-1 but cause a similar type of cell death. The results indicated that the MPMs must cross through the cell membrane to exert their action and that they are lysosomotropic. Further experiments showed that some of the MPMs could induce phosphorylation of eukaryotic initiation factor 2α (eIF2α) in HSC-3 and UT-SCC-24A cells, which indicates that they can activate the integrated stress response that is strongly associated with immunogenic cell death. Cell surface expression of calreticulin and release of HMGB1 and ATP, which are all hallmarks of immunogenic cell death, was also demonstrated in HSC-3 and UT-SCC-24A cells treated with MPMs. This suggests that the MPMs are interesting candidates for future HNSCC cancer therapies.

4.
Eur J Med Chem ; 249: 115147, 2023 Mar 05.
Article in English | MEDLINE | ID: mdl-36739750

ABSTRACT

Mimics of antimicrobial peptides (AMPs) have been proposed as a promising class of antimicrobial agents. We report the analysis of five tetrasubstituted, cationic, amphipathic heterocycles as potential AMP mimics. The analysis showed that the heterocyclic scaffold had a strong influence on the haemolytic activity of the compounds, and the hydantoin scaffold was identified as a promising template for drug lead development. Subsequently, a total of 20 hydantoin derivatives were studied for their antimicrobial potency and haemolytic activity. We found 19 of these derivatives to have very low haemolytic toxicity and identified three lead structures, 2dA, 6cG, and 6dG with very promising broad-spectrum antimicrobial activity. Lead structure 6dG displayed minimum inhibitory concentration (MIC) values as low as 1 µg/mL against Gram-positive bacteria and 4-16 µg/mL against Gram-negative bacteria. Initial mode of action (MoA) studies performed on the amine derivative 6cG, utilizing a luciferase-based biosensor assay, suggested a strong membrane disrupting effect on the outer and inner membrane of Escherichia coli. Our findings show that the physical properties and structural arrangement induced by the heterocyclic scaffolds are important factors in the design of AMP mimics.


Subject(s)
Anti-Infective Agents , Hydantoins , Hydantoins/pharmacology , Anti-Infective Agents/pharmacology , Antimicrobial Cationic Peptides/chemistry , Gram-Negative Bacteria , Microbial Sensitivity Tests , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry
5.
Biomater Adv ; 145: 213238, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36527962

ABSTRACT

The eradication of bacteria embedded in biofilms is among the most challenging obstacles in the management of chronic wounds. These biofilms are found in most chronic wounds; moreover, the biofilm-embedded bacteria are considerably less susceptible to conventional antimicrobial treatment than the planktonic bacteria. Antimicrobial peptides and their mimics are considered attractive candidates in the pursuit of novel therapeutic options for the treatment of chronic wounds and general bacterial eradication. However, some limitations linked to these membrane-active antimicrobials are making their clinical use challenging. Novel innovative delivery systems addressing these limitations represent a smart solution. We hypothesized that incorporation of a novel synthetic mimic of an antimicrobial peptide in liposomes could improve its anti-biofilm effect as well as the anti-inflammatory activity. The small synthetic mimic of an antimicrobial peptide, 7e-SMAMP, was incorporated into liposomes (~280 nm) tailored for skin wounds and evaluated for its potential activity against both biofilm formation and eradication of pre-formed biofilms. The 7e-SMAMP-liposomes significantly lowered inflammatory response in murine macrophages (~30 % reduction) without affecting the viability of macrophages or keratinocytes. Importantly, the 7e-SMAMP-liposomes completely eradicated biofilms produced by Staphylococcus aureus and Escherichia coli above concentrations of 6.25 µg/mL, whereas in Pseudomonas aeruginosa the eradication reached 75 % at the same concentration. Incorporation of 7e-SMAMP in liposomes improved both the inhibition of biofilm formation as well as biofilm eradication in vitro, as compared to non-formulated antimicrobial, therefore confirming its potential as a novel therapeutic option for bacteria-infected chronic wounds.


Subject(s)
Anti-Infective Agents , Antimicrobial Peptides , Animals , Mice , Liposomes , Anti-Infective Agents/pharmacology , Staphylococcus aureus/physiology , Antimicrobial Cationic Peptides/pharmacology , Biofilms
6.
Int J Mol Sci ; 23(22)2022 Nov 10.
Article in English | MEDLINE | ID: mdl-36430320

ABSTRACT

We have synthesised short analogues of the marine antimicrobial peptide Turgencin A from the colonial Arctic ascidian Synoicum turgens. In this study, we focused on a central, cationic 12-residue Cys-Cys loop region within the sequence. Modified (tryptophan- and arginine-enriched) linear peptides were compared with Cys-Cys cyclic derivatives, and both linear and Cys-cyclic peptides were N-terminally acylated with octanoic acid (C8), decanoic acid (C10) or dodecanoic acid (C12). The highest antimicrobial potency was achieved by introducing dodecanoic acid to a cyclic Turgencin A analogue with low intrinsic hydrophobicity, and by introducing octanoic acid to a cyclic analogue displaying a higher intrinsic hydrophobicity. Among all tested synthetic Turgencin A lipopeptide analogues, the most promising candidates regarding both antimicrobial and haemolytic activity were C12-cTurg-1 and C8-cTurg-2. These optimized cyclic lipopeptides displayed minimum inhibitory concentrations of 4 µg/mL against Staphylococcus aureus, Escherichia coli and the fungus Rhodothorula sp. Mode of action studies on bacteria showed a rapid membrane disruption and bactericidal effect of the cyclic lipopeptides. Haemolytic activity against human erythrocytes was low, indicating favorable selective targeting of bacterial cells.


Subject(s)
Anti-Infective Agents , Lipopeptides , Humans , Lipopeptides/pharmacology , Lipopeptides/chemistry , Cyclization , Antimicrobial Peptides , Anti-Infective Agents/pharmacology , Anti-Infective Agents/chemistry , Peptides, Cyclic/pharmacology , Peptides, Cyclic/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/chemistry , Escherichia coli , Hemolysis
7.
Sci Rep ; 12(1): 15586, 2022 09 16.
Article in English | MEDLINE | ID: mdl-36114339

ABSTRACT

Bioprospecting contributes to the discovery of new molecules with anticancer properties. Compounds with cytolytic activity and the ability to induce immunogenic cell death can be administered as intratumoral injections with the aim to activate anti-tumor immune responses by causing the release of tumor antigens as well as damage-associated molecular patterns (DAMPs) from dying cancer cells. In the present study, we report the cytolytic and DAMP-releasing effects of a new natural product mimic termed MPM-1 that was inspired by the marine Eusynstyelamides. We found that MPM-1 rapidly killed cancer cells in vitro by inducing a necrosis-like death, which was accompanied by lysosomal swelling and perturbation of autophagy in HSC-3 (human oral squamous cell carcinoma) cells. MPM-1 also induced release of the DAMPs adenosine triphosphate (ATP) and high mobility group box 1 (HMGB1) from Ramos (B-cell lymphoma) and HSC-3 cells, as well as cell surface expression of calreticulin in HSC-3 cells. This indicates that MPM-1 has the ability to induce immunogenic cell death, further suggesting that it may have potential as a novel anticancer compound.


Subject(s)
Alarmins , Biological Products , Carcinoma, Squamous Cell , Mouth Neoplasms , Adenosine Triphosphate/metabolism , Alarmins/drug effects , Alarmins/metabolism , Antigens, Neoplasm , Biological Products/pharmacology , Calreticulin/metabolism , Carcinoma, Squamous Cell/drug therapy , Cell Line, Tumor , HMGB1 Protein/drug effects , HMGB1 Protein/metabolism , Humans , Mouth Neoplasms/drug therapy
8.
Eur J Med Chem ; 241: 114632, 2022 Nov 05.
Article in English | MEDLINE | ID: mdl-36027613

ABSTRACT

An amphipathic barbiturate mimic of the marine eusynstyelamides is reported as a promising class of antimicrobial agents. We hereby report a detailed analysis of the structure-activity relationship for cationic amphipathic N,N'-dialkylated-5,5-disubstituted barbiturates. The influence of various cationic groups, hydrocarbon linkers and lipophilic side chains on the compounds' antimicrobial potency and haemolytic activity was studied. A comprehensive library of 58 compounds was prepared using a concise synthetic strategy. We found cationic amine and guanidyl groups to yield the highest broad-spectrum activity and cationic trimethylated quaternary amine groups to exert narrow-spectrum activity against Gram-positive bacteria. n-Propyl hydrocarbon linkers proved to be the best compromise between potency and haemolytic activity. The combination of two different lipophilic side chains allowed for further fine-tuning of the biological properties. Using these insights, we were able to prepare both, the potent narrow-spectrum barbiturate 8a and the broad-spectrum barbiturates 11lG, 13jA and 13jG, all having low or no haemolytic activity. The guanidine derivative 11lG demonstrated a strong membrane disrupting effect in luciferase-based assays. We believe that these results may be valuable in further development of antimicrobial lead structures.


Subject(s)
Anti-Infective Agents , Gram-Negative Bacteria , Amines , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Anti-Infective Agents/chemistry , Anti-Infective Agents/pharmacology , Barbiturates/pharmacology , Cations/chemistry , Cations/pharmacology , Hemolysis , Humans , Microbial Sensitivity Tests , Structure-Activity Relationship
9.
J Med Chem ; 64(15): 11395-11417, 2021 08 12.
Article in English | MEDLINE | ID: mdl-34314189

ABSTRACT

We report a series of synthetic cationic amphipathic barbiturates inspired by the pharmacophore model of small antimicrobial peptides (AMPs) and the marine antimicrobials eusynstyelamides. These N,N'-dialkylated-5,5-disubstituted barbiturates consist of an achiral barbiturate scaffold with two cationic groups and two lipophilic side chains. Minimum inhibitory concentrations of 2-8 µg/mL were achieved against 30 multi-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including isolates with extended spectrum ß-lactamase-carbapenemase production. The guanidine barbiturate 7e (3,5-di-Br) demonstrated promising in vivo antibiotic efficacy in mice infected with clinical isolates of Escherichia coli and Klebsiella pneumoniae using a neutropenic peritonitis model. Mode of action studies showed a strong membrane disrupting effect and was supported by nuclear magnetic resonance and molecular dynamics simulations. The results express how the pharmacophore model of small AMPs and the structure of the marine eusynstyelamides can be used to design highly potent lead peptidomimetics against multi-resistant bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Barbiturates/pharmacology , Biological Products/pharmacology , Guanidines/pharmacology , Indoles/pharmacology , Pore Forming Cytotoxic Proteins/pharmacology , Surface-Active Agents/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Barbiturates/chemical synthesis , Barbiturates/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Dose-Response Relationship, Drug , Drug Resistance, Multiple, Bacterial/drug effects , Escherichia coli/drug effects , Guanidines/chemical synthesis , Guanidines/chemistry , Indoles/chemical synthesis , Indoles/chemistry , Microbial Sensitivity Tests , Molecular Structure , Pore Forming Cytotoxic Proteins/chemical synthesis , Pore Forming Cytotoxic Proteins/chemistry , Structure-Activity Relationship , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry
10.
Int J Mol Sci ; 21(15)2020 Jul 30.
Article in English | MEDLINE | ID: mdl-32751755

ABSTRACT

Turgencin A, a potent antimicrobial peptide isolated from the Arctic sea squirt Synoicum turgens, consists of 36 amino acid residues and three disulfide bridges, making it challenging to synthesize. The aim of the present study was to develop a truncated peptide with an antimicrobial drug lead potential based on turgencin A. The experiments consisted of: (1) sequence analysis and prediction of antimicrobial potential of truncated 10-mer sequences; (2) synthesis and antimicrobial screening of a lead peptide devoid of the cysteine residues; (3) optimization of in vitro antimicrobial activity of the lead peptide using an amino acid replacement strategy; and (4) screening the synthesized peptides for cytotoxic activities. In silico analysis of turgencin A using various prediction software indicated an internal, cationic 10-mer sequence to be putatively antimicrobial. The synthesized truncated lead peptide displayed weak antimicrobial activity. However, by following a systematic amino acid replacement strategy, a modified peptide was developed that retained the potency of the original peptide. The optimized peptide StAMP-9 displayed bactericidal activity, with minimal inhibitory concentrations of 7.8 µg/mL against Staphylococcus aureus and 3.9 µg/mL against Escherichia coli, and no cytotoxic effects against mammalian cells. Preliminary experiments indicate the bacterial membranes as immediate and primary targets.


Subject(s)
Antimicrobial Cationic Peptides/pharmacology , Biological Products/chemistry , Pore Forming Cytotoxic Proteins/pharmacology , Amino Acid Sequence/genetics , Animals , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/genetics , Aquatic Organisms/genetics , Biological Products/pharmacology , Escherichia coli/drug effects , Escherichia coli/pathogenicity , Humans , Microbial Sensitivity Tests , Pore Forming Cytotoxic Proteins/chemical synthesis , Pore Forming Cytotoxic Proteins/chemistry , Pore Forming Cytotoxic Proteins/genetics , Sequence Analysis, Protein , Staphylococcus aureus/drug effects , Staphylococcus aureus/pathogenicity
11.
J Pept Sci ; 26(2): e3233, 2020 Feb.
Article in English | MEDLINE | ID: mdl-31802582

ABSTRACT

EeCentrocin 1 is a potent antimicrobial peptide isolated from the marine sea urchin Echinus esculentus. The peptide has a hetero-dimeric structure with the antimicrobial activity confined in its largest monomer, the heavy chain (HC), encompassing 30 amino acid residues. The aim of the present study was to develop a shorter drug lead peptide using the heavy chain of EeCentrocin 1 as a starting scaffold and to perform a structure-activity relationship study with sequence modifications to optimize antimicrobial activity. The experiments consisted of 1) truncation of the heavy chain, 2) replacement of amino acids unfavourable for in vitro antimicrobial activity, and 3) an alanine scan experiment on the truncated and modified heavy chain sequence to identify essential residues for antimicrobial activity. The heavy chain of EeCentrocin 1 was truncated to less than half its initial size, retaining most of its original antimicrobial activity. The truncated and optimized lead peptide (P6) consisted of the 12 N-terminal amino acid residues from the original EeCentrocin 1 HC sequence and was modified by two amino acid replacements and a C-terminal amidation. Results from the alanine scan indicated that the generated lead peptide (P6) contained the optimal sequence for antibacterial activity, in which none of the alanine scan peptides could surpass its antimicrobial activity. The lead peptide (P6) was also superior in antifungal activity compared to the other peptides prepared and showed minimal inhibitory concentrations (MICs) in the low micromolar range. In addition, the lead peptide (P6) displayed minor haemolytic and no cytotoxic activity, making it a promising lead for further antimicrobial drug development.


Subject(s)
Antimicrobial Cationic Peptides/chemistry , Antimicrobial Cationic Peptides/pharmacology , Sea Urchins/chemistry , Amino Acid Sequence , Amino Acid Substitution , Animals , Antimicrobial Cationic Peptides/genetics , Bacteria/drug effects , Microbial Sensitivity Tests , Protein Multimerization , Structure-Activity Relationship
12.
Eur J Med Chem ; 183: 111671, 2019 Dec 01.
Article in English | MEDLINE | ID: mdl-31536892

ABSTRACT

The rapid emergence and spread of multi-resistant bacteria have created an urgent need for new antimicrobial agents. We report here a series of amphipathic α,α-disubstituted ß-amino amide derivatives with activity against 30 multi-resistant clinical isolates of Gram-positive and Gram-negative bacteria, including isolates with extended spectrum ß-lactamase - carbapenemase (ESBL-CARBA) production. A variety of halogenated aromatic side-chains were investigated to improve antimicrobial potency and minimize formation of Phase I metabolites. Net positive charge and cationic character of the derivatives had an important effect on toxicity against human cell lines. The most potent and selective derivative was the diguanidine derivative 4e with 3,5-di-brominated benzylic side-chains. Derivative 4e displayed minimum inhibitory concentrations (MIC) of 0.25-8 µg/mL against Gram-positive and Gram-negative reference strains, and 2-32 µg/mL against multi-resistant clinical isolates. Derivative 4e showed also low toxicity against human red blood cells (EC50 > 200 µg/mL), human hepatocyte carcinoma cells (HepG2: EC50 > 64 µg/mL), and human lung fibroblast cells (MRC-5: EC50 > 64 µg/mL). The broad-spectrum antimicrobial activity and low toxicity of diguanylated derivatives such as 4e make them attractive as lead compounds for development of novel antimicrobial drugs.


Subject(s)
Amides/chemistry , Anti-Infective Agents/chemistry , Drug Resistance, Multiple, Bacterial/drug effects , Amides/chemical synthesis , Amides/pharmacology , Animals , Anti-Infective Agents/chemical synthesis , Anti-Infective Agents/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Halogenation , Humans , Mice , Microbial Sensitivity Tests
13.
Bioorg Med Chem ; 26(17): 4930-4941, 2018 09 15.
Article in English | MEDLINE | ID: mdl-30185388

ABSTRACT

There is an urgent need for novel antimicrobial agents to address the threat of bacterial resistance to modern society. We have used a structural motif found in antimicrobial marine hit compounds as a basis for synthesizing a library of antimicrobial sulfonamidobenzamide lead compounds. Potent in vitro antimicrobial activity against clinically relevant bacterial strains was demonstrated for two compounds, G6 and J18, with minimal inhibitory concentrations (MIC) of 4-16 µg/ml against clinical methicillin-resistant Staphylococcus aureus (MRSA) and vancomycin-resistant Enterococcus faecium (VRE). The two compounds G6 and J18, together with several other compounds of this library, also caused ≥90% eradication of pre-established biofilm of methicillin-resistant S. epidermidis (MRSE) at 40 µg/ml. Using a luciferase assay, the mechanism of action of G6 was shown to resemble the biocide chlorhexidine by targeting the bacterial cell membrane.


Subject(s)
Anti-Bacterial Agents/pharmacology , Benzamides/pharmacology , Biofilms/drug effects , Biological Products/pharmacology , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Methicillin-Resistant Staphylococcus aureus/drug effects , Sulfonamides/pharmacology , Anti-Bacterial Agents/chemistry , Benzamides/chemistry , Biological Products/chemistry , Drug Resistance, Multiple, Bacterial , Erythrocytes/drug effects , Hemolysis/drug effects , Humans , Microbial Sensitivity Tests , Seawater/chemistry , Sulfonamides/chemistry
14.
J Pept Sci ; 24(10): e3117, 2018 Oct.
Article in English | MEDLINE | ID: mdl-30112781

ABSTRACT

The present study describes the synthesis and biological studies of a small series of head-to-tail cyclic tetrapeptides of the general structure c(Lys-ß2,2 -Xaa-Lys) containing one lipophilic ß2,2 -amino acid and Lys, Gly, Ala, or Phe as the Xaa residue in the sequence. The peptides were investigated for antimicrobial activity against gram-positive and gram-negative reference strains and 30 multiresistant clinical isolates including strains with extended spectrum ß-lactamase-carbapenemase (ESBL-CARBA) production. Toxicity was determined against human red blood cells. The most potent peptides showed high activity against the gram-positive clinical isolates with minimum inhibitory concentrations of 4-8 µg/mL and low haemolytic activity. The combination of high antimicrobial activity and low toxicity shows that these cyclic tetrapeptides containing lipophilic ß2,2 -amino acids form a valuable scaffold for designing novel antimicrobial agents.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Drug Resistance, Multiple, Bacterial/drug effects , Peptides, Cyclic/chemical synthesis , Anti-Bacterial Agents/chemistry , Anti-Bacterial Agents/pharmacology , Drug Design , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Halogenation , Molecular Structure , Oligopeptides/chemical synthesis , Oligopeptides/chemistry , Oligopeptides/pharmacology , Peptides, Cyclic/chemistry , Peptides, Cyclic/pharmacology , Structure-Activity Relationship
15.
Bioorg Med Chem ; 25(20): 5380-5395, 2017 10 15.
Article in English | MEDLINE | ID: mdl-28797773

ABSTRACT

A library of 29 small 1,4-substituted 1,2,3-triazoles was prepared for studies of antimicrobial activity. The pharmacophore model investigated with these substrates was based on small peptidomimetics of antimicrobial peptides and antimicrobials isolated from marine organisms from sub-arctic regions. Using methyl 1,2,3-triazole-carboxylates and 1,2,3-triazole methyl ketones prepared through "click" chemistry we were able to synthesize the different cationic amphiphiles through three steps or less. Several structural modifications to the lipopohilic side and hydrophilic sides of the amphiphiles were investigated and compared with regards to antimicrobial activity and cytotoxicity in particular. The most promising amphiphile 10f displayed minimum inhibitory concentrations (MICs) between 4-16µg/mL against Gram-positive Enterococcus faecalis, Staphylococcus aureus, Streptococcus agalacticae, and Gram-negative Escherichia coli and Pseudomonas aeruginosa. The decent level of antimicrobial activity and biofilm inhibition, short synthesis, and accessible reagents, makes this type of amphiphilic mimics interesting leads for further development.


Subject(s)
Alkynes/chemistry , Anti-Bacterial Agents/pharmacology , Butyrates/chemistry , Propionates/chemistry , Surface-Active Agents/pharmacology , Triazoles/pharmacology , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Dose-Response Relationship, Drug , Enterococcus faecalis/drug effects , Escherichia coli/drug effects , Microbial Sensitivity Tests , Molecular Structure , Peptidomimetics , Pseudomonas aeruginosa/drug effects , Staphylococcus/drug effects , Structure-Activity Relationship , Surface-Active Agents/chemical synthesis , Surface-Active Agents/chemistry , Triazoles/chemical synthesis , Triazoles/chemistry
16.
Bioorg Med Chem Lett ; 27(5): 1119-1123, 2017 03 01.
Article in English | MEDLINE | ID: mdl-28189422

ABSTRACT

A library of 28 small cationic 1,4-substituted 1,2,3-triazoles was prepared for studies of antimicrobial activity. The structures addressed the pharmacophore model of small antimicrobial peptides and an amphipathic motif found in marine antimicrobials. Eight compounds showed promising antimicrobial activity, of which the most potent compound 10b displayed minimum inhibitory concentrations of 4-8µg/mL against Streptococcus agalacticae, Staphylococcus aureus, Pseudomonas aeruginosa, Escherichia coli, and Enterococcus faecalis. The simple syntheses and low degree of functionalization make these 1,4-substituted 1,2,3-triazoles interesting for further optimizations.


Subject(s)
Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/pharmacology , Triazoles/chemical synthesis , Triazoles/pharmacology , Anti-Bacterial Agents/chemistry , Cations , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Weight , Triazoles/chemistry
17.
Bioorg Med Chem ; 24(22): 5884-5894, 2016 11 15.
Article in English | MEDLINE | ID: mdl-27692769

ABSTRACT

A library of small aminobenzamide derivatives was synthesised to explore a cationic amphipathic motif found in marine natural antimicrobials. The most potent compound E23 displayed minimal inhibitory concentrations (MICs) of 0.5-2µg/ml against several Gram-positive bacterial strains, including methicillin resistant Staphylococcus epidermidis (MRSE).E23 was also potent against 275 clinical isolates including Staphylococcus aureus, Enterococcus spp., Escherichia coli, Pseudomonas aeruginosa, and Klebsiella pneumoniae, as well as methicillin-resistant S. aureus (MRSA), vancomycin-resistant enterococci (VRE), and ESBL-CARBA producing multi-resistant Gram-negative bacteria. The study demonstrates how structural motifs found in marine natural antimicrobials can be a valuable source for making novel antimicrobial lead-compounds.


Subject(s)
Anti-Bacterial Agents/pharmacology , Antimicrobial Cationic Peptides/pharmacology , Benzamides/pharmacology , Biological Products/pharmacology , Drug Resistance, Multiple, Bacterial/drug effects , Anti-Bacterial Agents/chemical synthesis , Anti-Bacterial Agents/chemistry , Antimicrobial Cationic Peptides/chemical synthesis , Antimicrobial Cationic Peptides/chemistry , Benzamides/chemical synthesis , Benzamides/chemistry , Biological Products/chemical synthesis , Biological Products/chemistry , Dose-Response Relationship, Drug , Gram-Negative Bacteria/drug effects , Gram-Positive Bacteria/drug effects , Microbial Sensitivity Tests , Molecular Structure , Structure-Activity Relationship
18.
Org Biomol Chem ; 14(31): 7570-8, 2016 Aug 21.
Article in English | MEDLINE | ID: mdl-27439743

ABSTRACT

A practical and efficient methodology for the preparation of 2-aminoethyl α,α-disubstituted ß-amino amides in three steps from methyl cyanoacetate has been developed. The key step in the synthesis was the chemoselective reduction of the nitrile group in presence of an amide and aryl halide functionalities. Reduction with RANEY® Nickel catalyst, either with molecular hydrogen (8-10 bar) or under transfer hydrogenation conditions, necessitated in situ protection of the resulting amines with Boc2O, whereas aryl bromide containing nitriles could be chemoselectively reduced with ZnCl2/NaBH4 without debromination. The developed protocol involved only one chromatographic purification step and can be performed at gram scale.

19.
PLoS One ; 11(6): e0157306, 2016.
Article in English | MEDLINE | ID: mdl-27280777

ABSTRACT

We demonstrate in the current work that small cationic antimicrobial ß2,2-amino acid derivatives (Mw < 500 Da) are highly potent against Chlamydia pneumoniae at clinical relevant concentrations (< 5 µM, i.e. < 3.4 µg/mL). C. pneumoniae is an atypical respiratory pathogen associated with frequent treatment failures and persistent infections. This gram-negative bacterium has a biphasic life cycle as infectious elementary bodies and proliferating reticulate bodies, and efficient treatment is challenging because of its long and obligate intracellular replication cycle within specialized inclusion vacuoles. Chlamydicidal effect of the ß2,2-amino acid derivatives in infected human epithelial cells was confirmed by transmission electron microscopy. Images of infected host cells treated with our lead derivative A2 revealed affected chlamydial inclusion vacuoles 24 hours post infection. Only remnants of elementary and reticulate bodies were detected at later time points. Neither the EM studies nor resazurin-based cell viability assays showed toxic effects on uninfected host cells or cell organelles after A2 treatment. Besides the effects on early intracellular inclusion vacuoles, the ability of these ß2,2-amino acid derivatives to suppress Chlamydia pneumoniae infectivity upon treatment of elementary bodies suggested also a direct interaction with bacterial membranes. Synthetic ß2,2-amino acid derivatives that target C. pneumoniae represent promising lead molecules for development of antimicrobial agents against this hard-to-treat intracellular pathogen.


Subject(s)
Amino Acids, Branched-Chain , Cell Cycle/drug effects , Chlamydophila Infections/drug therapy , Chlamydophila pneumoniae/growth & development , Amino Acids, Branched-Chain/chemical synthesis , Amino Acids, Branched-Chain/chemistry , Amino Acids, Branched-Chain/pharmacology , Cell Line , Chlamydophila Infections/metabolism , Chlamydophila Infections/pathology , Chlamydophila pneumoniae/cytology , Chlamydophila pneumoniae/pathogenicity , Humans
20.
J Pept Sci ; 20(4): 279-91, 2014 Apr.
Article in English | MEDLINE | ID: mdl-24677781

ABSTRACT

We have in the present study explored the anticancer activity against human Burkitt's lymphoma cells (Ramos) of a series of small linear and cyclic tetrapeptides containing a ß2,2-amino acid with either two 2-naphthyl-methylene or two para-CF3-benzyl side chains, along with their interaction with the main plasma protein human serum albumin (HSA). The cyclic and more amphipathic tetrapeptides revealed a notably higher anticancer potency against Ramos cells [50% inhibitory concentration (IC50) 11­70 µM] compared to the linear tetrapeptide counterparts (IC50 18.7 to >413 µM). The most potent cyclic tetrapeptide c3 had a 16.5-fold preference for Ramos cells compared to human red blood cells, whereas the cyclic tetrapeptide c1 both showed low hemolytic activity and displayed the overall highest (2.9-fold) preference for Ramos cells (IC50 23 µM) compared to healthy human lung fibroblast cells (MRC-5). Investigating the interaction of selected tetrapeptides and recently reported hexapeptides with HSA revealed that the peptides bind to drug site II of HSA in the 22­28 µM range, disregarding size and overall structure. NMR and in silico molecular docking experiments identified the lipophilic residues as responsible for the interaction, but in vitro studies showed that the anticancer potency of the peptides varied in the presence of HSA and that c3 remained the most potent peptide. Based on our findings, we call for implementing serum albumin binding in development of anticancer peptides, as it may have implications for future administration and systemic distribution of peptide-based cancer drugs.


Subject(s)
Antineoplastic Agents/pharmacology , Oligopeptides/pharmacology , Peptides, Cyclic/pharmacology , Serum Albumin/metabolism , Antineoplastic Agents/metabolism , Antineoplastic Agents/pharmacokinetics , Cell Line , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Nuclear Magnetic Resonance, Biomolecular , Oligopeptides/metabolism , Oligopeptides/pharmacokinetics , Peptides, Cyclic/metabolism , Peptides, Cyclic/pharmacokinetics , Protein Binding
SELECTION OF CITATIONS
SEARCH DETAIL
...