Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Clin Invest ; 134(1)2024 Jan 02.
Article in English | MEDLINE | ID: mdl-38165034

ABSTRACT

The infertility of many couples rests on an enigmatic dysfunction of the man's sperm. To gain insight into the underlying pathomechanisms, we assessed the function of the sperm-specific multisubunit CatSper-channel complex in the sperm of almost 2,300 men undergoing a fertility workup, using a simple motility-based test. We identified a group of men with normal semen parameters but defective CatSper function. These men or couples failed to conceive naturally and upon medically assisted reproduction via intrauterine insemination and in vitro fertilization. Intracytoplasmic sperm injection (ICSI) was, ultimately, required to conceive a child. We revealed that the defective CatSper function was caused by variations in CATSPER genes. Moreover, we unveiled that CatSper-deficient human sperm were unable to undergo hyperactive motility and, therefore, failed to penetrate the egg coat. Thus, our study provides the experimental evidence that sperm hyperactivation is required for human fertilization, explaining the infertility of CatSper-deficient men and the need of ICSI for medically assisted reproduction. Finally, our study also revealed that defective CatSper function and ensuing failure to hyperactivate represents the most common cause of unexplained male infertility known thus far and that this sperm channelopathy can readily be diagnosed, enabling future evidence-based treatment of affected couples.


Subject(s)
Infertility, Male , Semen , Child , Humans , Male , Semen/physiology , Calcium Channels/genetics , Sperm Motility/physiology , Spermatozoa/physiology , Infertility, Male/therapy , Infertility, Male/genetics , Fertilization in Vitro , Fertilization/physiology
2.
Elife ; 122023 Nov 28.
Article in English | MEDLINE | ID: mdl-38013430

ABSTRACT

Cylicins are testis-specific proteins, which are exclusively expressed during spermiogenesis. In mice and humans, two Cylicins, the gonosomal X-linked Cylicin 1 (Cylc1/CYLC1) and the autosomal Cylicin 2 (Cylc2/CYLC2) genes, have been identified. Cylicins are cytoskeletal proteins with an overall positive charge due to lysine-rich repeats. While Cylicins have been localized in the acrosomal region of round spermatids, they resemble a major component of the calyx within the perinuclear theca at the posterior part of mature sperm nuclei. However, the role of Cylicins during spermiogenesis has not yet been investigated. Here, we applied CRISPR/Cas9-mediated gene editing in zygotes to establish Cylc1- and Cylc2-deficient mouse lines as a model to study the function of these proteins. Cylc1 deficiency resulted in male subfertility, whereas Cylc2-/-, Cylc1-/yCylc2+/-, and Cylc1-/yCylc2-/- males were infertile. Phenotypical characterization revealed that loss of Cylicins prevents proper calyx assembly during spermiogenesis. This results in decreased epididymal sperm counts, impaired shedding of excess cytoplasm, and severe structural malformations, ultimately resulting in impaired sperm motility. Furthermore, exome sequencing identified an infertile man with a hemizygous variant in CYLC1 and a heterozygous variant in CYLC2, displaying morphological abnormalities of the sperm including the absence of the acrosome. Thus, our study highlights the relevance and importance of Cylicins for spermiogenic remodeling and male fertility in human and mouse, and provides the basis for further studies on unraveling the complex molecular interactions between perinuclear theca proteins required during spermiogenesis.


Male humans, mice and other animals produce sex cells known as sperm that seek out and fertilize egg cells from females. Sperm have a very distinctive shape with a head and a long tail that enables them to swim towards an egg. At the front of the sperm's head is a pointed structure known as the acrosome that helps the sperm to burrow into an egg cell. A structure known as the cytoskeleton is responsible for forming and maintaining the shape of acrosomes and other parts of cells. Two proteins, known as Cylicin 1 and Cylicin 2, are unique to the cytoskeleton of sperm, but their roles remain unclear. To investigate the role of the Cylicins during spermiogenesis, Schneider, Kovacevic et al. used an approach called CRISPR/Cas9-mediated gene-editing to generate mutant mice that were unable to produce either Cylicin 1 or Cylicin 2, or both proteins. The experiments found that healthy female mice were less likely to become pregnant when they mated with mutant males that lacked Cylicin 1 compared with males that had the protein. When they did become pregnant, the females had smaller litters of babies. Mutant male mice lacking Cylicin 2 or both Cylicin proteins (so-called "double" mutants), were infertile and mating with healthy female mice did not lead to any pregnancies. Further experiments found that the sperm of such mice had smaller heads than normal sperm, defective acrosomes, and curled tails that wrapped around the head. Schneider, Kovacevic et al. also examined the sperm of a human patient who had inherited genetic variants in the genes encoding both Cylicin proteins. Similar to the double mutant mice, the patient was infertile, and his sperm also had defective acrosomes and curled tails. These findings indicate that Cylicins are required to make the acrosome as sperm cells mature and help maintain the structure of the cytoskeleton of sperm. Further studies of Cylicins and other sperm proteins in mice may help us to understand some of the factors that contribute to male infertility in humans.


Subject(s)
Infertility, Male , Porifera , Humans , Male , Animals , Mice , Sperm Motility/genetics , Semen/metabolism , Spermatozoa/metabolism , Cytoskeletal Proteins/metabolism , Infertility, Male/genetics , Fertility/genetics
3.
Mol Neurobiol ; 60(12): 7238-7252, 2023 Dec.
Article in English | MEDLINE | ID: mdl-37542648

ABSTRACT

N-Methyl-D-aspartate receptors (NMDARs) composed of different splice variants display distinct pH sensitivities and are crucial for learning and memory, as well as for inflammatory or injury processes. Dysregulation of the NMDAR has been linked to diseases like Parkinson's, Alzheimer's, schizophrenia, and drug addiction. The development of selective receptor modulators, therefore, constitutes a promising approach for numerous therapeutical applications. Here, we identified (R)-OF-NB1 as a promising splice variant selective NMDAR antagonist. We investigated the interaction of (R)-OF-NB1 and NMDAR from a biochemical, bioinformatical, and electrophysiological perspective to characterize the downstream allosteric modulation of NMDAR by 3-benzazepine derivatives. The allosteric modulatory pathway starts at the ifenprodil binding pocket in the amino terminal domain and immobilizes the connecting α5-helix to the ligand binding domain, resulting in inhibition. In contrast, the exon 5 splice variant GluN1-1b elevates the NMDARs flexibility and promotes the open state of its ligand binding domain.


Subject(s)
Benzazepines , Receptors, N-Methyl-D-Aspartate , Ligands , Benzazepines/pharmacology , Exons , Learning
4.
J Pharm Biomed Anal ; 229: 115354, 2023 May 30.
Article in English | MEDLINE | ID: mdl-37003086

ABSTRACT

N-Acyl phosphatidylethanolamine-hydrolyzing phospholipase D (NAPE-PLD) is the major enzyme for the biosynthesis of the endocannabinoid anandamide. The role of NAPE-PLD in various physiological and pathophysiological conditions is currently under investigation. For example, the enzyme might be involved in the control of neuronal activity, embryonic development and pregnancy, and prostate cancer. We synthesized a novel NAPE-PLD substrate with a fluorogenic pyrene substituent at the N-acyl residue as tool compound for studying this enzyme. As shown by HPLC with fluorescence detection, in rat brain microsomes the substrate was transformed into the expected pyrene-labeled N-acylethanolamine (NAE), but minor amounts of three by-products could also be detected. In the presence of pan-serine hydrolase and secretory phospholipase A2 inhibitors, the generation of these compounds, whose identity was verified using reference substances, was abolished. Based on these results, a method for determining the activity of NAPE-PLD was developed, validated, and applied to evaluate the action of known inhibitors of this enzyme. With human sperm, it was shown that the fluorescent substrate can also be used to study NAPE metabolism in intact cells.


Subject(s)
Phospholipase D , Rats , Animals , Male , Humans , Phospholipase D/chemistry , Phospholipase D/metabolism , Chromatography, High Pressure Liquid , Semen/metabolism , Endocannabinoids
5.
Biol Chem ; 404(4): 241-254, 2023 03 28.
Article in English | MEDLINE | ID: mdl-36809224

ABSTRACT

The Phosphatidylinositol 3-phosphate 5-kinase Type III PIKfyve is the main source for selectively generated phosphatidylinositol 3,5-bisphosphate (PI(3,5)P2), a known regulator of membrane protein trafficking. PI(3,5)P2 facilitates the cardiac KCNQ1/KCNE1 channel plasma membrane abundance and therewith increases the macroscopic current amplitude. Functional-physical interaction of PI(3,5)P2 with membrane proteins and its structural impact is not sufficiently understood. This study aimed to identify molecular interaction sites and stimulatory mechanisms of the KCNQ1/KCNE1 channel via the PIKfyve-PI(3,5)P2 axis. Mutational scanning at the intracellular membrane leaflet and nuclear magnetic resonance (NMR) spectroscopy identified two PI(3,5)P2 binding sites, the known PIP2 site PS1 and the newly identified N-terminal α-helix S0 as relevant for functional PIKfyve effects. Cd2+ coordination to engineered cysteines and molecular modeling suggest that repositioning of S0 stabilizes the channel s open state, an effect strictly dependent on parallel binding of PI(3,5)P2 to both sites.


Subject(s)
KCNQ1 Potassium Channel , Phosphatidylinositol 4,5-Diphosphate , Phosphatidylinositol 4,5-Diphosphate/chemistry , Phosphatidylinositol 4,5-Diphosphate/metabolism , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/genetics , KCNQ1 Potassium Channel/metabolism , Binding Sites , Mutation , Cell Membrane/metabolism
6.
ACS Pharmacol Transl Sci ; 6(1): 115-127, 2023 Jan 13.
Article in English | MEDLINE | ID: mdl-36654752

ABSTRACT

The sperm-specific Ca2+ channel CatSper (cation channel of sperm) controls the intracellular Ca2+ concentration and, thereby, the swimming behavior of sperm from many species. The steroidal ethylenediamine RU1968 (1) represents a well-characterized, potent, and fairly selective cross-species inhibitor of CatSper. Due to its two additional centers of chirality in the amine-bearing side chain, RU1968 is a mixture of diastereomeric pairs of enantiomers and, thus, difficult to synthesize. This has hampered the use of this commercially not available inhibitor as a powerful tool for research. Here, simplifying both structure and synthesis, we introduced novel stereochemically less complex and enantiomerically pure aminomethyl RU1968 analogues lacking the C-21 CH3 moiety. Starting from (+)-estrone, a five-step synthesis was developed comprising a Wittig reaction as the key step, leading to a diastereomerically pure 17ß-configured aldehyde. Subsequent reductive amination yielded diastereomerically and enantiomerically pure amines. Compared to RU1968, the novel ethylenediamine 2d and homologous trimethylenediamine derivative 2e inhibited CatSper with similar and even twofold enhanced potency, respectively. Considering that these aminomethyl analogues are enantiomerically pure and much easier to synthesize than RU1968, we envisage their common use in future studies investigating the physiology of CatSper in sperm.

7.
Anal Biochem ; 657: 114889, 2022 11 15.
Article in English | MEDLINE | ID: mdl-36113549

ABSTRACT

1,2-Diacylglycerol lipases (DAGLs) are the most important enzymes for the biosynthesis of the endocannabinoid 2-arachidonoylglycerol (2-AG), and their role in various pathophysiological conditions is currently under investigation. We synthesized a new 1,2-diacylglycerol substrate for these enzymes with a fluorogenic 4-(pyren-1-yl)butanoyl residue in sn-2 position. Using the fluorescent substrate, we measured DAGL activity in rat liver S9 fraction and brain microsomes. To this end, 2-acylglycerol release was directly determined via HPLC and fluorescence detection without further sample clean-up. The method was used to evaluate the action of several known DAGL inhibitors. These showed partly significant differences in their inhibitory effect on DAGLs in liver versus brain preparations. The method was verified by measuring the IC50 values for a subset of inhibitors by HPLC and single-quad MS detection using the deuterated natural DAGL substrate 1-stearoyl-2-arachidonoyl-sn-glycerol-d8. DAGL activity could also be measured with the new pyrene-labeled substrate by HPLC and UV instead of fluorescence detection, if larger quantities of the samples were injected into the HPLC system. Furthermore, using intact human sperm, we show that the substrate is also converted by DAGL enzymes in human cells.


Subject(s)
Endocannabinoids , Lipoprotein Lipase , Animals , Chromatography, High Pressure Liquid , Diglycerides , Glycerides , Humans , Male , Pyrenes , Rats , Semen
8.
Elife ; 102021 12 03.
Article in English | MEDLINE | ID: mdl-34859780

ABSTRACT

Fluorescent probes that change their spectral properties upon binding to small biomolecules, ions, or changes in the membrane potential (Vm) are invaluable tools to study cellular signaling pathways. Here, we introduce a novel technique for simultaneous recording of multiple probes at millisecond time resolution: frequency- and spectrally-tuned multiplexing (FASTM). Different from present multiplexing approaches, FASTM uses phase-sensitive signal detection, which renders various combinations of common probes for Vm and ions accessible for multiplexing. Using kinetic stopped-flow fluorimetry, we show that FASTM allows simultaneous recording of rapid changes in Ca2+, pH, Na+, and Vm with high sensitivity and minimal crosstalk. FASTM is also suited for multiplexing using single-cell microscopy and genetically encoded FRET biosensors. Moreover, FASTM is compatible with optochemical tools to study signaling using light. Finally, we show that the exceptional time resolution of FASTM also allows resolving rapid chemical reactions. Altogether, FASTM opens new opportunities for interrogating cellular signaling.


Subject(s)
Arbacia/physiology , Biosensing Techniques/methods , Fluorescent Dyes/chemistry , Spermatozoa/physiology , Animals , Male
9.
Hum Reprod ; 36(10): 2638-2648, 2021 09 18.
Article in English | MEDLINE | ID: mdl-34486673

ABSTRACT

STUDY QUESTION: Do selective serotonin reuptake inhibitor (SSRI) antidepressants affect the function of human sperm? SUMMARY ANSWER: The SSRI antidepressant Sertraline (e.g. Zoloft) inhibits the sperm-specific Ca2+ channel CatSper and affects human sperm function in vitro. WHAT IS KNOWN ALREADY: In human sperm, CatSper translates changes of the chemical microenvironment into changes of the intracellular Ca2+ concentration ([Ca2+]i) and swimming behavior. CatSper is promiscuously activated by oviductal ligands, but also by synthetic chemicals that might disturb the fertilization process. It is well known that SSRIs have off-target actions on Ca2+, Na+ and K+ channels in somatic cells. Whether SSRIs affect the activity of CatSper is, however, unknown. STUDY DESIGN, SIZE, DURATION: We studied the action of the seven drugs belonging to the most commonly prescribed class of antidepressants, SSRIs, on resting [Ca2+]i and Ca2+ influx via CatSper in human sperm. The SSRI Sertraline was selected for in-depth analysis of its action on steroid-, prostaglandin-, pH- and voltage-activation of human CatSper. Moreover, the action of Sertraline on sperm acrosomal exocytosis and penetration into viscous media was evaluated. PARTICIPANTS/MATERIALS, SETTING, METHODS: The activity of CatSper was investigated in sperm of healthy volunteers, using kinetic Ca2+ fluorimetry and patch-clamp recordings. Acrosomal exocytosis was investigated using Pisum sativum agglutinin and image cytometry. Sperm penetration in viscous media was evaluated using the Kremer test. MAIN RESULTS AND THE ROLE OF CHANCE: Several SSRIs affected [Ca2+]i and attenuated ligand-induced Ca2+ influx via CatSper. In particular, the SSRI Sertraline almost completely suppressed Ca2+ influx via CatSper. Remarkably, the drug was about four-fold more potent to suppress prostaglandin- versus steroid-induced Ca2+ influx. Sertraline also suppressed alkaline- and voltage-activation of CatSper, indicating that the drug directly inhibits the channel. Finally, Sertraline impaired ligand-induced acrosome reaction and sperm penetration into viscous media. LIMITATIONS, REASONS FOR CAUTION: This is an in vitro study. Future studies have to assess the physiological relevance in vivo. WIDER IMPLICATIONS OF THE FINDINGS: The off-target action of Sertraline on CatSper in human sperm might impair the fertilization process. In a research setting, Sertraline may be used to selectively inhibit prostaglandin-induced Ca2+ influx. STUDY FUNDING/COMPETING INTEREST(S): This work was supported by the Swiss Centre for Applied Human Toxicology (SCAHT), the Département de l'Instruction Publique of the State of Geneva, the German Research Foundation (CRU326), the Interdisciplinary Center for Clinical Research, Münster (IZKF; Str/014/21), the Innovation Fund Denmark (grant numbers 14-2013-4) and the EDMaRC research grant from the Kirsten and Freddy Johansen's Foundation. The authors declare that no conflict of interest could be perceived as prejudicing the impartiality of the research reported. TRIAL REGISTRATION NUMBER: NA.


Subject(s)
Calcium , Sertraline , Antidepressive Agents/metabolism , Antidepressive Agents/pharmacology , Calcium/metabolism , Calcium Channels/metabolism , Calcium Signaling , Humans , Male , Progesterone/pharmacology , Sertraline/metabolism , Sertraline/pharmacology , Sperm Motility , Spermatozoa/metabolism
10.
Front Cell Dev Biol ; 9: 699554, 2021.
Article in English | MEDLINE | ID: mdl-34381781

ABSTRACT

The sperm-specific Ca2+ channel CatSper registers chemical cues that assist human sperm to fertilize the egg. Prime examples are progesterone and prostaglandin E1 that activate CatSper without involving classical nuclear and G protein-coupled receptors, respectively. Here, we study the action of seminal and follicular fluid as well of the contained individual prostaglandins and steroids on the intracellular Ca2+ concentration of sperm from donors and CATSPER2-deficient patients that lack functional CatSper channels. We show that any of the reproductive steroids and prostaglandins evokes a rapid Ca2+ increase that invariably rests on Ca2+ influx via CatSper. The hormones compete for the same steroid- and prostaglandin-binding site to activate the channel, respectively. Analysis of the hormones' structure-activity relationship highlights their unique pharmacology in sperm and the chemical features determining their effective properties. Finally, we show that Zn2+ suppresses the action of steroids and prostaglandins on CatSper, which might prevent premature prostaglandin activation of CatSper in the ejaculate, aiding sperm to escape from the ejaculate into the female genital tract. Altogether, our findings reinforce that human CatSper serves as a promiscuous chemosensor that enables sperm to probe the varying hormonal microenvironment prevailing at different stages during their journey across the female genital tract.

11.
Mol Hum Reprod ; 27(3)2021 02 27.
Article in English | MEDLINE | ID: mdl-33561200

ABSTRACT

Motile cilia line the efferent ducts of the mammalian male reproductive tract. Several recent mouse studies have demonstrated that a reduced generation of multiple motile cilia in efferent ducts is associated with obstructive oligozoospermia and fertility issues. However, the sole impact of efferent duct cilia dysmotility on male infertility has not been studied so far either in mice or human. Using video microscopy, histological- and ultrastructural analyses, we examined male reproductive tracts of mice deficient for the axonemal motor protein DNAH5: this defect exclusively disrupts the outer dynein arm (ODA) composition of motile cilia but not the ODA composition and motility of sperm flagella. These mice have immotile efferent duct cilia that lack ODAs, which are essential for ciliary beat generation. Furthermore, they show accumulation of sperm in the efferent duct. Notably, the ultrastructure and motility of sperm from these males are unaffected. Likewise, human individuals with loss-of-function DNAH5 mutations present with reduced sperm count in the ejaculate (oligozoospermia) and dilatations of the epididymal head but normal sperm motility, similar to DNAH5 deficient mice. The findings of this translational study demonstrate, in both mice and men, that efferent duct ciliary motility is important for male reproductive fitness and uncovers a novel pathomechanism distinct from primary defects of sperm motility (asthenozoospermia). If future work can identify environmental factors or defects in genes other than DNAH5 that cause efferent duct cilia dysmotility, this will help unravel other causes of oligozoospermia and may influence future practices in genetic and fertility counseling as well as ART.


Subject(s)
Axonemal Dyneins/metabolism , Axoneme/metabolism , Cilia/metabolism , Genitalia, Male/metabolism , Sperm Motility , Spermatozoa/pathology , Animals , Axonemal Dyneins/genetics , Axoneme/genetics , Axoneme/ultrastructure , Cilia/genetics , Cilia/ultrastructure , Ciliary Motility Disorders/genetics , Ciliary Motility Disorders/metabolism , Ciliary Motility Disorders/pathology , Genetic Predisposition to Disease , Genitalia, Male/ultrastructure , Humans , Male , Mice, 129 Strain , Mice, Inbred C57BL , Mice, Transgenic , Movement , Mutation , Oligospermia/genetics , Oligospermia/metabolism , Oligospermia/pathology , Phenotype , Spermatozoa/ultrastructure
12.
Nat Commun ; 11(1): 5520, 2020 11 02.
Article in English | MEDLINE | ID: mdl-33139725

ABSTRACT

Axonemal dynein ATPases direct ciliary and flagellar beating via adenosine triphosphate (ATP) hydrolysis. The modulatory effect of adenosine monophosphate (AMP) and adenosine diphosphate (ADP) on flagellar beating is not fully understood. Here, we describe a deficiency of cilia and flagella associated protein 45 (CFAP45) in humans and mice that presents a motile ciliopathy featuring situs inversus totalis and asthenospermia. CFAP45-deficient cilia and flagella show normal morphology and axonemal ultrastructure. Proteomic profiling links CFAP45 to an axonemal module including dynein ATPases and adenylate kinase as well as CFAP52, whose mutations cause a similar ciliopathy. CFAP45 binds AMP in vitro, consistent with structural modelling that identifies an AMP-binding interface between CFAP45 and AK8. Microtubule sliding of dyskinetic sperm from Cfap45-/- mice is rescued with the addition of either AMP or ADP with ATP, compared to ATP alone. We propose that CFAP45 supports mammalian ciliary and flagellar beating via an adenine nucleotide homeostasis module.


Subject(s)
Adenine Nucleotides/metabolism , Asthenozoospermia/genetics , Cytoskeletal Proteins/deficiency , Situs Inversus/genetics , Adolescent , Adult , Animals , Asthenozoospermia/pathology , Axoneme/ultrastructure , CRISPR-Cas Systems/genetics , Cilia/metabolism , Cilia/ultrastructure , Cytoskeletal Proteins/genetics , DNA Mutational Analysis , Disease Models, Animal , Epididymis/pathology , Female , Flagella/metabolism , Flagella/ultrastructure , Humans , Loss of Function Mutation , Male , Mice , Mice, Knockout , Middle Aged , Planarians/cytology , Planarians/genetics , Planarians/metabolism , Respiratory Mucosa/cytology , Respiratory Mucosa/pathology , Situs Inversus/diagnostic imaging , Situs Inversus/pathology , Sperm Motility/genetics , Tomography, X-Ray Computed , Exome Sequencing
13.
Front Cell Dev Biol ; 8: 572735, 2020.
Article in English | MEDLINE | ID: mdl-32984353

ABSTRACT

Mammalian oocytes are enveloped by the zona pellucida (ZP), an extracellular matrix of glycoproteins. In sperm, stimulation with ZP proteins evokes a rapid Ca2+ influx via the sperm-specific, pH-sensitive Ca2+ channel CatSper. However, the physiological role and molecular mechanisms underlying ZP-dependent activation of CatSper are unknown. Here, we delineate the sequence of ZP-signaling events in mouse sperm. We show that ZP proteins evoke a rapid intracellular pH i increase that rests predominantly on Na+/H+ exchange by NHA1 and requires cAMP synthesis by the soluble adenylyl cyclase sAC as well as a sufficiently negative membrane potential set by the spem-specific K+ channel Slo3. The alkaline-activated CatSper channel translates the ZP-induced pH i increase into a Ca2+ response. Our findings reveal the molecular components underlying ZP action on mouse sperm, opening up new avenues for understanding the basic principles of sperm function and, thereby, mammalian fertilization.

14.
J Biol Chem ; 295(38): 13181-13193, 2020 09 18.
Article in English | MEDLINE | ID: mdl-32703901

ABSTRACT

The sperm-specific Ca2+ channel CatSper (cation channel of sperm) controls the influx of Ca2+ into the flagellum and, thereby, the swimming behavior of sperm. A hallmark of human CatSper is its polymodal activation by membrane voltage, intracellular pH, and oviductal hormones. Whether CatSper is also activated by signaling pathways involving an increase of cAMP and ensuing activation of PKA is, however, a matter of controversy. To shed light on this question, we used kinetic ion-sensitive fluorometry, patch-clamp recordings, and optochemistry to study transmembrane Ca2+ flux and membrane currents in human sperm from healthy donors and from patients that lack functional CatSper channels. We found that human CatSper is neither activated by intracellular cAMP directly nor indirectly by the cAMP/PKA-signaling pathway. Instead, we show that nonphysiological concentrations of cAMP and membrane-permeable cAMP analogs used to mimic the action of intracellular cAMP activate human CatSper from the outside via a hitherto-unknown extracellular binding site. Finally, we demonstrate that the effects of common PKA inhibitors on human CatSper rest predominantly, if not exclusively, on off-target drug actions on CatSper itself rather than on inhibition of PKA. We conclude that the concept of an intracellular cAMP/PKA-activation of CatSper is primarily based on unspecific effects of chemical probes used to interfere with cAMP signaling. Altogether, our findings solve several controversial issues and reveal a novel ligand-binding site controlling the activity of CatSper, which has important bearings on future studies of cAMP and Ca2+ signaling in sperm.


Subject(s)
Calcium Channels/metabolism , Calcium Signaling , Cyclic AMP-Dependent Protein Kinases/metabolism , Cyclic AMP/metabolism , Spermatozoa/metabolism , Calcium Channels/genetics , Cyclic AMP/genetics , Cyclic AMP-Dependent Protein Kinases/genetics , Humans , Hydrogen-Ion Concentration , Male , Spermatozoa/cytology
15.
Cell Physiol Biochem ; 54(2): 321-332, 2020 Apr 08.
Article in English | MEDLINE | ID: mdl-32259418

ABSTRACT

BACKGROUND/AIMS: The cardiac current IKs is carried by the KCNQ1/KCNE1-channel complex. Genetic aberrations that affect the activity of KCNQ1/KCNE1 can lead to the Long QT Syndrome 1 and 5 and, thereby, to a predisposition to sudden cardiac death. This might be prevented by pharmacological modulation of KCNQ1/KCNE1. The prototypic KCNQ1/KCNE1 activator 4,4'-Diisothiocyanatostilbene-2,2'-disulfonic acid (DIDS) represents a candidate drug. Here, we study the mechanism of DIDS action on KCNQ1/KCNE1. METHODS: Channels were expressed in Xenopus oocytes and iPSC cardiomyocytes. The role of the central S6 region was investigated by alanin-screening of KCNQ1 residues 333-338. DIDS effects were measured by TEVC and MEA. RESULTS: DIDS-action is influenced by the presence of KCNE1 but not by KCNQ1/KCNE1 stochiometry. V334A produces a significant higher increase in current amplitude, whereas deactivation (slowdown) DIDS-sensitivity is affected by residues 334-338. CONCLUSION: We show that the central S6 region serves as a hub for allosteric channel activation by the drug and that DIDS shortens the pseudo QT interval in iPSC cardiomyocytes. The elucidation of the structural and mechanistic underpinnings of the DIDS action on KCNQ1/KCNE1 might allow for a targeted design of DIDS derivatives with improved potency and selectivity.


Subject(s)
4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/pharmacology , Action Potentials/drug effects , KCNQ1 Potassium Channel/metabolism , Myocytes, Cardiac/metabolism , Potassium Channels, Voltage-Gated/metabolism , 4,4'-Diisothiocyanostilbene-2,2'-Disulfonic Acid/chemistry , Allosteric Regulation , Animals , Humans , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Ion Channel Gating/drug effects , KCNQ1 Potassium Channel/chemistry , KCNQ1 Potassium Channel/genetics , Models, Molecular , Mutation , Oocytes/metabolism , Potassium Channels, Voltage-Gated/chemistry , Potassium Channels, Voltage-Gated/genetics , Protein Domains , Xenopus laevis
16.
EMBO J ; 39(4): e102363, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31957048

ABSTRACT

Navigation of sperm in fluid flow, called rheotaxis, provides long-range guidance in the mammalian oviduct. The rotation of sperm around their longitudinal axis (rolling) promotes rheotaxis. Whether sperm rolling and rheotaxis require calcium (Ca2+ ) influx via the sperm-specific Ca2+ channel CatSper, or rather represent passive biomechanical and hydrodynamic processes, has remained controversial. Here, we study the swimming behavior of sperm from healthy donors and from infertile patients that lack functional CatSper channels, using dark-field microscopy, optical tweezers, and microfluidics. We demonstrate that rolling and rheotaxis persist in CatSper-deficient human sperm. Furthermore, human sperm undergo rolling and rheotaxis even when Ca2+ influx is prevented. Finally, we show that rolling and rheotaxis also persist in mouse sperm deficient in both CatSper and flagellar Ca2+ -signaling domains. Our results strongly support the concept that passive biomechanical and hydrodynamic processes enable sperm rolling and rheotaxis, rather than calcium signaling mediated by CatSper or other mechanisms controlling transmembrane Ca2+ flux.


Subject(s)
Hydrodynamics , Sperm Motility , Spermatozoa/physiology , Animals , Biomechanical Phenomena , Calcium/metabolism , Calcium Channels/genetics , Calcium Channels/metabolism , Calcium Signaling , Humans , Male , Mice , Seminal Plasma Proteins/genetics , Seminal Plasma Proteins/metabolism
17.
EMBO J ; 39(4): e102723, 2020 02 17.
Article in English | MEDLINE | ID: mdl-31880004

ABSTRACT

Cilia serve as cellular antennae that translate sensory information into physiological responses. In the sperm flagellum, a single chemoattractant molecule can trigger a Ca2+ rise that controls motility. The mechanisms underlying such ultra-sensitivity are ill-defined. Here, we determine by mass spectrometry the copy number of nineteen chemosensory signaling proteins in sperm flagella from the sea urchin Arbacia punctulata. Proteins are up to 1,000-fold more abundant than the free cellular messengers cAMP, cGMP, H+ , and Ca2+ . Opto-chemical techniques show that high protein concentrations kinetically compartmentalize the flagellum: Within milliseconds, cGMP is relayed from the receptor guanylate cyclase to a cGMP-gated channel that serves as a perfect chemo-electrical transducer. cGMP is rapidly hydrolyzed, possibly via "substrate channeling" from the channel to the phosphodiesterase PDE5. The channel/PDE5 tandem encodes cGMP turnover rates rather than concentrations. The rate-detection mechanism allows continuous stimulus sampling over a wide dynamic range. The textbook notion of signal amplification-few enzyme molecules process many messenger molecules-does not hold for sperm flagella. Instead, high protein concentrations ascertain messenger detection. Similar mechanisms may occur in other small compartments like primary cilia or dendritic spines.


Subject(s)
Arbacia/physiology , Chemotaxis , Proteomics , Signal Transduction , Animals , Arbacia/ultrastructure , Calcium/metabolism , Cilia/physiology , Cilia/ultrastructure , Cyclic GMP/metabolism , Electron Microscope Tomography , Flagella/physiology , Flagella/ultrastructure , Guanylate Cyclase/metabolism , Male , Mass Spectrometry , Spermatozoa/physiology , Spermatozoa/ultrastructure
18.
Cells ; 8(7)2019 06 27.
Article in English | MEDLINE | ID: mdl-31252584

ABSTRACT

Inside the female genital tract, mammalian sperm undergo a maturation process called capacitation, which primes the sperm to navigate across the oviduct and fertilize the egg. Sperm capacitation and motility are controlled by 3',5'-cyclic adenosine monophosphate (cAMP). Here, we show that optogenetics, the control of cellular signaling by genetically encoded light-activated proteins, allows to manipulate cAMP dynamics in sperm flagella and, thereby, sperm capacitation and motility by light. To this end, we used sperm that express the light-activated phosphodiesterase LAPD or the photo-activated adenylate cyclase bPAC. The control of cAMP by LAPD or bPAC combined with pharmacological interventions provides spatiotemporal precision and allows to probe the physiological function of cAMP compartmentalization in mammalian sperm.


Subject(s)
Cyclic AMP/metabolism , Optogenetics/methods , Sperm Capacitation/physiology , Sperm Motility/physiology , Sperm Tail/metabolism , Animals , Enzyme Assays , Light , Male , Mice , Mice, Transgenic , Phosphoric Diester Hydrolases/genetics , Phosphoric Diester Hydrolases/metabolism , Phosphoric Diester Hydrolases/radiation effects , Spatio-Temporal Analysis
19.
Methods Cell Biol ; 151: 487-517, 2019.
Article in English | MEDLINE | ID: mdl-30948028

ABSTRACT

Sperm from sea urchins are attracted by chemical cues released by the egg-a mechanism called chemotaxis. We describe here the signaling pathway and molecular components endowing sperm with single-molecule sensitivity. Chemotactic signaling and behavioral responses occur on a timescale of a few milliseconds to seconds. We describe the techniques and chemical tools used to resolve the signaling events in time. The techniques include rapid-mixing devices, rapid stroboscopic microscopy, and photolysis of caged second messengers and chemoattractants.


Subject(s)
Optics and Photonics/methods , Sperm Motility/genetics , Spermatozoa/growth & development , Stroboscopy/methods , Animals , Chemotactic Factors/chemistry , Kinetics , Male , Sea Urchins/growth & development , Spermatozoa/ultrastructure
20.
Front Neurol ; 10: 178, 2019.
Article in English | MEDLINE | ID: mdl-30881339

ABSTRACT

N-Methyl-D-aspartate (NMDA) receptors (NMDARs) are among the most important excitatory neurotransmitter receptors in the human brain. Autoantibodies to the human NMDAR cause the most frequent form of autoimmune encephalitis involving autoantibody-mediated receptor cross-linking and subsequent internalization of the antibody-receptor complex. This has been deemed to represent the predominant antibody effector mechanism depleting the NMDAR from the synaptic and extra-synaptic neuronal cell membrane. To assess in detail the molecular mechanisms of autoantibody-induced NMDAR endocytosis, vesicular trafficking, and exocytosis we transiently co-expressed rat GluN1-1a-EGFP and GluN2B-ECFP alone or together with scaffolding postsynaptic density protein 95 (PSD-95), wild-type (WT), or dominant-negative (DN) mutant Ras-related in brain (RAB) proteins (RAB5WT, RAB5DN, RAB11WT, RAB11DN) in HEK 293T cells. The cells were incubated with a pH-rhodamine-labeled human recombinant monoclonal GluN1 IgG1 autoantibody (GluN1-aAbpH-rhod) genetically engineered from clonally expanded intrathecal plasma cells from a patient with anti-NMDAR encephalitis, and the pH-rhodamine fluorescence was tracked over time. We show that due to the acidic luminal pH, internalization of the NMDAR-autoantibody complex into endosomes and lysosomes increases the pH-rhodamine fluorescence. The increase in fluorescence allows for mechanistic assessment of endocytosis, vesicular trafficking in these vesicular compartments, and exocytosis of the NMDAR-autoantibody complex under steady state conditions. Using this method, we demonstrate a role for PSD-95 in stabilization of NMDARs in the cell membrane in the presence of GluN1-aAbpH-rhod, while RAB proteins did not exert a significant effect on vertical trafficking of the internalized NMDAR autoantibody complex in this heterologous expression system. This novel assay allows to unravel molecular mechanisms of autoantibody-induced receptor internalization and to study novel small-scale specific molecular-based therapies for autoimmune encephalitis syndromes.

SELECTION OF CITATIONS
SEARCH DETAIL
...