Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Beilstein J Nanotechnol ; 8: 1484-1493, 2017.
Article in English | MEDLINE | ID: mdl-28900602

ABSTRACT

New multifunctional nanoparticles (NPs) that can be used as contrast agents (CA) in different imaging techniques, such as photoluminescence (PL) microscopy and magnetic resonance imaging (MRI), open new possibilities for medical imaging, e.g., in the fields of diagnostics or tissue characterization in regenerative medicine. The focus of this study is on the synthesis and characterization of CaF2:(Tb3+,Gd3+) NPs. Fabricated in a wet-chemical procedure, the spherical NPs with a diameter of 5-10 nm show a crystalline structure. Simultaneous doping of the NPs with different lanthanide ions, leading to paramagnetism and fluorescence, makes them suitable for MR and PL imaging. Owing to the Gd3+ ions on the surface, the NPs reduce the MR T1 relaxation time constant as a function of their concentration. Thus, the NPs can be used as a MRI CA with a mean relaxivity of about r = 0.471 mL·mg-1·s-1. Repeated MRI examinations of four different batches prove the reproducibility of the NP synthesis and determine the long-term stability of the CAs. No cytotoxicity of NP concentrations between 0.5 and 1 mg·mL-1 was observed after exposure to human dermal fibroblasts over 24 h. Overall this study shows, that the CaF2:(Tb3+,Gd3+) NPs are suitable for medical imaging.

2.
Phys Chem Chem Phys ; 18(36): 25221-25229, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27711457

ABSTRACT

The maximum magnetisation (saturation magnetisation) obtainable for iron oxide nanoparticles can be increased by doping the nanocrystals with non-magnetic elements such as zinc. Herein, we closely study how only slightly different synthesis approaches towards such doped nanoparticles strongly influence the resulting sub-nano/atomic structure. We compare two co-precipitation approaches, where we only vary the base (NaOH versus NH3), and a thermal decomposition route. These methods are the most commonly applied ones for synthesising doped iron oxide nanoparticles. The measurable magnetisation change upon zinc doping is about the same for all systems. However, the sub-nano structure, which we studied with Mössbauer and X-ray absorption near edge spectroscopy, differs tremendously. We found evidence that a much more complex picture has to be drawn regarding what happens upon Zn doping compared to what textbooks tell us about the mechanism. Our work demonstrates that it is crucial to study the obtained structures very precisely when "playing" with the atomic order in iron oxide nanocrystals.

3.
Transplantation ; 73(5): 789-96, 2002 Mar 15.
Article in English | MEDLINE | ID: mdl-11907429

ABSTRACT

BACKGROUND: Acute vascular rejection in pig-to-primate xenotransplantation involves recognition and damage of porcine (po) endothelial cells (EC) by human (hu) leukocytes, probably including natural killer (NK) cells. To study such interactions we analyzed rolling and static adhesion of hu NK cells to po EC. METHODS: The effects of blocking hu and po adhesion molecules on the adhesion hu NK cells to po EC monolayers was analyzed under shear stress (10 min, 37 degrees C, 0.7 dynes/cm2) or under static conditions (10 min, 37 degrees C). All used cell populations were phenotypically characterized by flow cytometry. RESULTS: Blocking of CD106 on po EC or its ligand CD49d on hu NK cells decreased rolling adhesion of both fresh and activated hu NK cells by more than 75%. Masking of CD62L on fresh but not activated hu NK resulted in a 44% decrease in rolling adhesion, in line with the diminished cell surface expression of CD62L upon activation. Antibodies to CD31, CD54, CD62E, and CD62P on EC or CD11a, CD18, and CD162 on NK cells had only minor effects on rolling adhesion. The adhesion of the FcgammaRIII- hu NK cell line NK92 to po EC was inhibited by 95% after masking po CD106 whereas antibodies to po CD31, CD54, CD62E, or CD62P had no effect, thereby excluding effects of Fc-receptor-dependent binding of hu NK cells to po EC. Static adhesion of activated NK cells was reduced by approximately 60% by blocking either CD49d or CD106, by 47% by blocking CD11a, and by 82% upon simultaneous blocking of CD11a and CD49d. CONCLUSIONS: Interactions between hu CD49d and po CD106 are crucial for both rolling and firm adhesion of hu NK cells to po EC and thus represent attractive targets for specific therapeutic interventions to prevent NK cell-mediated responses against po xenografts.


Subject(s)
Antigens, CD/physiology , Endothelium, Vascular/cytology , Killer Cells, Natural/physiology , Vascular Cell Adhesion Molecule-1/physiology , Animals , CD18 Antigens/physiology , Cell Adhesion , E-Selectin/physiology , Humans , Integrin alpha4 , Lymphocyte Function-Associated Antigen-1/physiology , P-Selectin/physiology , Rotation , Swine
SELECTION OF CITATIONS
SEARCH DETAIL
...