Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 38
Filter
Add more filters










Publication year range
1.
Bull Chem Soc Jpn ; 97(5): uoae018, 2024 May.
Article in English | MEDLINE | ID: mdl-38828441

ABSTRACT

Due to their constrained conformations, cyclic ß2,3-amino acids (cßAA) are key building blocks that can fold peptides into compact and rigid structures, improving peptidase resistance and binding affinity to target proteins, due to their constrained conformations. Although the translation efficiency of cßAAs is generally low, our engineered tRNA, referred to as tRNAPro1E2, enabled efficient incorporation of cßAAs into peptide libraries using the flexible in vitro translation (FIT) system. Here we report on the design and application of a macrocyclic peptide library incorporating 3 kinds of cßAAs: (1R,2S)-2-aminocyclopentane carboxylic acid (ß1), (1S,2S)-2-aminocyclohexane carboxylic acid (ß2), and (1R,2R)-2-aminocyclopentane carboxylic acid. This library was applied to an in vitro selection against the SARS-CoV-2 main protease (Mpro). The resultant peptides, BM3 and BM7, bearing one ß2 and two ß1, exhibited potent inhibitory activities with IC50 values of 40 and 20 nM, respectively. BM3 and BM7 also showed remarkable serum stability with half-lives of 48 and >168 h, respectively. Notably, BM3A and BM7A, wherein the cßAAs were substituted with alanine, lost their inhibitory activities against Mpro and displayed substantially shorter serum half-lives. This observation underscores the significant contribution of cßAA to the activity and stability of peptides. Overall, our results highlight the potential of cßAA in generating potent and highly stable macrocyclic peptides with drug-like properties.

2.
Nat Commun ; 15(1): 2931, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38575566

ABSTRACT

Cystathionine beta-synthase (CBS) is an essential metabolic enzyme across all domains of life for the production of glutathione, cysteine, and hydrogen sulfide. Appended to the conserved catalytic domain of human CBS is a regulatory domain that modulates activity by S-adenosyl-L-methionine (SAM) and promotes oligomerisation. Here we show using cryo-electron microscopy that full-length human CBS in the basal and SAM-bound activated states polymerises as filaments mediated by a conserved regulatory domain loop. In the basal state, CBS regulatory domains sterically block the catalytic domain active site, resulting in a low-activity filament with three CBS dimers per turn. This steric block is removed when in the activated state, one SAM molecule binds to the regulatory domain, forming a high-activity filament with two CBS dimers per turn. These large conformational changes result in a central filament of SAM-stabilised regulatory domains at the core, decorated with highly flexible catalytic domains. Polymerisation stabilises CBS and reduces thermal denaturation. In PC-3 cells, we observed nutrient-responsive CBS filamentation that disassembles when methionine is depleted and reversed in the presence of SAM. Together our findings extend our understanding of CBS enzyme regulation, and open new avenues for investigating the pathogenic mechanism and therapeutic opportunities for CBS-associated disorders.


Subject(s)
Cystathionine beta-Synthase , Methionine , Humans , Cystathionine beta-Synthase/metabolism , Cryoelectron Microscopy , S-Adenosylmethionine/metabolism , Catalytic Domain
3.
RSC Chem Biol ; 5(2): 117-130, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38333195

ABSTRACT

The SARS-CoV-2 papain-like protease (PLpro) is an antiviral drug target that catalyzes the hydrolysis of the viral polyproteins pp1a/1ab, so releasing the non-structural proteins (nsps) 1-3 that are essential for the coronavirus lifecycle. The LXGG↓X motif in pp1a/1ab is crucial for recognition and cleavage by PLpro. We describe molecular dynamics, docking, and quantum mechanics/molecular mechanics (QM/MM) calculations to investigate how oligopeptide substrates derived from the viral polyprotein bind to PLpro. The results reveal how the substrate sequence affects the efficiency of PLpro-catalyzed hydrolysis. In particular, a proline at the P2' position promotes catalysis, as validated by residue substitutions and mass spectrometry-based analyses. Analysis of PLpro catalyzed hydrolysis of LXGG motif-containing oligopeptides derived from human proteins suggests that factors beyond the LXGG motif and the presence of a proline residue at P2' contribute to catalytic efficiency, possibly reflecting the promiscuity of PLpro. The results will help in identifying PLpro substrates and guiding inhibitor design.

4.
Bioorg Med Chem ; 95: 117498, 2023 11 15.
Article in English | MEDLINE | ID: mdl-37857256

ABSTRACT

The SARS-CoV-2 papain-like protease (PLpro) and main protease (Mpro) are nucleophilic cysteine enzymes that catalyze hydrolysis of the viral polyproteins pp1a/1ab. By contrast with Mpro, PLpro is also a deubiquitinase (DUB) that accepts post-translationally modified human proteins as substrates. Here we report studies on the DUB activity of PLpro using synthetic Nε-lysine-branched oligopeptides as substrates that mimic post-translational protein modifications by ubiquitin (Ub) or Ub-like modifiers (UBLs), such as interferon stimulated gene 15 (ISG15). Mass spectrometry (MS)-based assays confirm the DUB activity of isolated recombinant PLpro. They reveal that the sequence of both the peptide fragment derived from the post-translationally modified protein and that derived from the UBL affects PLpro catalysis; the nature of substrate binding in the S sites appears to be more important for catalytic efficiency than binding in the S' sites. Importantly, the results reflect the reported cellular substrate selectivity of PLpro, i.e. human proteins conjugated to ISG15 are better substrates than those conjugated to Ub or other UBLs. The combined experimental and modelling results imply that PLpro catalysis is affected not only by the identity of the substrate residues binding in the S and S' sites, but also by the substrate fold and the conformational dynamics of the blocking loop 2 of the PLpro:substrate complex. Nε-Lysine-branched oligopeptides thus have potential to help the identification of PLpro substrates. More generally, the results imply that MS-based assays with Nε-lysine-branched oligopeptides have potential to monitor catalysis by human DUBs and hence to inform on their substrate preferences.


Subject(s)
COVID-19 , Lysine , Humans , Viral Proteins/metabolism , SARS-CoV-2 , Ubiquitin/metabolism , Deubiquitinating Enzymes , Oligopeptides
5.
Sci Adv ; 9(25): eadg7865, 2023 06 23.
Article in English | MEDLINE | ID: mdl-37343087

ABSTRACT

Inhibitor discovery for emerging drug-target proteins is challenging, especially when target structure or active molecules are unknown. Here, we experimentally validate the broad utility of a deep generative framework trained at-scale on protein sequences, small molecules, and their mutual interactions-unbiased toward any specific target. We performed a protein sequence-conditioned sampling on the generative foundation model to design small-molecule inhibitors for two dissimilar targets: the spike protein receptor-binding domain (RBD) and the main protease from SARS-CoV-2. Despite using only the target sequence information during the model inference, micromolar-level inhibition was observed in vitro for two candidates out of four synthesized for each target. The most potent spike RBD inhibitor exhibited activity against several variants in live virus neutralization assays. These results establish that a single, broadly deployable generative foundation model for accelerated inhibitor discovery is effective and efficient, even in the absence of target structure or binder information.


Subject(s)
Antibodies, Viral , COVID-19 , Humans , Antibodies, Viral/chemistry , SARS-CoV-2/metabolism , Protein Binding , Amino Acid Sequence
6.
Nat Chem ; 15(7): 998-1005, 2023 07.
Article in English | MEDLINE | ID: mdl-37217786

ABSTRACT

γ-Amino acids can play important roles in the biological activities of natural products; however, the ribosomal incorporation of γ-amino acids into peptides is challenging. Here we report how a selection campaign employing a non-canonical peptide library containing cyclic γ2,4-amino acids resulted in the discovery of very potent inhibitors of the SARS-CoV-2 main protease (Mpro). Two kinds of cyclic γ2,4-amino acids, cis-3-aminocyclobutane carboxylic acid (γ1) and (1R,3S)-3-aminocyclopentane carboxylic acid (γ2), were ribosomally introduced into a library of thioether-macrocyclic peptides. One resultant potent Mpro inhibitor (half-maximal inhibitory concentration = 50 nM), GM4, comprising 13 residues with γ1 at the fourth position, manifests a 5.2 nM dissociation constant. An Mpro:GM4 complex crystal structure reveals the intact inhibitor spans the substrate binding cleft. The γ1 interacts with the S1' catalytic subsite and contributes to a 12-fold increase in proteolytic stability compared to its alanine-substituted variant. Knowledge of interactions between GM4 and Mpro enabled production of a variant with a 5-fold increase in potency.


Subject(s)
Amino Acids , COVID-19 , Amino Acids/chemistry , Antiviral Agents/chemistry , Carboxylic Acids , Peptides/chemistry , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , Protein Conformation , SARS-CoV-2/metabolism
7.
J Chem Inf Model ; 63(9): 2866-2880, 2023 05 08.
Article in English | MEDLINE | ID: mdl-37058135

ABSTRACT

SARS-CoV-2 is the causative agent of COVID-19 and is responsible for the current global pandemic. The viral genome contains 5 major open reading frames of which the largest ORF1ab codes for two polyproteins, pp1ab and pp1a, which are subsequently cleaved into 16 nonstructural proteins (nsp) by two viral cysteine proteases encoded within the polyproteins. The main protease (Mpro, nsp5) cleaves the majority of the nsp's, making it essential for viral replication and has been successfully targeted for the development of antivirals. The first oral Mpro inhibitor, nirmatrelvir, was approved for treatment of COVID-19 in late December 2021 in combination with ritonavir as Paxlovid. Increasing the arsenal of antivirals and development of protease inhibitors and other antivirals with a varied mode of action remains a priority to reduce the likelihood for resistance emerging. Here, we report results from an artificial intelligence-driven approach followed by in vitro validation, allowing the identification of five fragment-like Mpro inhibitors with IC50 values ranging from 1.5 to 241 µM. The three most potent molecules (compounds 818, 737, and 183) were tested against SARS-CoV-2 by in vitro replication in Vero E6 and Calu-3 cells. Compound 818 was active in both cell models with an EC50 value comparable to its measured IC50 value. On the other hand, compounds 737 and 183 were only active in Calu-3, a preclinical model of respiratory cells, showing selective indexes twice as high as those for compound 818. We also show that our in silico methodology was successful in identifying both reversible and covalent inhibitors. For instance, compound 818 is a reversible chloromethylamide analogue of 8-methyl-γ-carboline, while compound 737 is an N-pyridyl-isatin that covalently inhibits Mpro. Given the small molecular weights of these fragments, their high binding efficiency in vitro and efficacy in blocking viral replication, these compounds represent good starting points for the development of potent lead molecules targeting the Mpro of SARS-CoV-2.


Subject(s)
Antiviral Agents , COVID-19 , Humans , Antiviral Agents/pharmacology , Antiviral Agents/chemistry , SARS-CoV-2 , Artificial Intelligence , Protease Inhibitors/pharmacology , Protease Inhibitors/chemistry , Molecular Docking Simulation
8.
J Med Chem ; 66(4): 2663-2680, 2023 02 23.
Article in English | MEDLINE | ID: mdl-36757959

ABSTRACT

Nirmatrelvir (PF-07321332) is a nitrile-bearing small-molecule inhibitor that, in combination with ritonavir, is used to treat infections by severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Nirmatrelvir interrupts the viral life cycle by inhibiting the SARS-CoV-2 main protease (Mpro), which is essential for processing viral polyproteins into functional nonstructural proteins. We report studies which reveal that derivatives of nirmatrelvir and other Mpro inhibitors with a nonactivated terminal alkyne group positioned similarly to the electrophilic nitrile of nirmatrelvir can efficiently inhibit isolated Mpro and SARS-CoV-2 replication in cells. Mass spectrometric and crystallographic evidence shows that the alkyne derivatives inhibit Mpro by apparent irreversible covalent reactions with the active site cysteine (Cys145), while the analogous nitriles react reversibly. The results highlight the potential for irreversible covalent inhibition of Mpro and other nucleophilic cysteine proteases by alkynes, which, in contrast to nitriles, can be functionalized at their terminal position to optimize inhibition and selectivity, as well as pharmacodynamic and pharmacokinetic properties.


Subject(s)
Antiviral Agents , COVID-19 , Coronavirus 3C Proteases , Nitriles , SARS-CoV-2 , Viral Protease Inhibitors , Humans , Antiviral Agents/pharmacology , Cysteine/chemistry , SARS-CoV-2/metabolism , Viral Nonstructural Proteins/metabolism , Viral Protease Inhibitors/pharmacology
9.
Faraday Discuss ; 240(0): 261-276, 2022 11 08.
Article in English | MEDLINE | ID: mdl-35938521

ABSTRACT

Developments in cryo-EM have allowed atomic or near-atomic resolution structure determination to become routine in single particle analysis (SPA). However, near-atomic resolution structures determined using cryo-electron tomography and sub-tomogram averaging (cryo-ET STA) are much less routine. In this paper, we show that collecting cryo-ET STA data using the same conditions as SPA, with both correlated double sampling (CDS) and the super-resolution mode, allowed apoferritin to be reconstructed out to the physical Nyquist frequency of the images. Even with just two tilt series, STA yields an apoferritin map at 2.9 Å resolution. These results highlight the exciting potential of cryo-ET STA in the future of protein structure determination. While processing SPA data recorded in super-resolution mode may yield structures surpassing the physical Nyquist limit, processing cryo-ET STA data in the super-resolution mode gave no additional resolution benefit. We further show that collecting SPA data in the super-resolution mode, with CDS activated, reduces the estimated B-factor, leading to a reduction in the number of particles required to reach a target resolution without compromising the data size on disk and the area imaged in SerialEM. However, collecting SPA data in CDS does reduce throughput, given that a similar resolution structure, with a slightly larger B-factor, is achievable with optimised parameters for speed in EPU (without CDS).


Subject(s)
Apoferritins , Electron Microscope Tomography , Cryoelectron Microscopy/methods , Electron Microscope Tomography/methods , Proteins/chemistry
10.
Acta Crystallogr D Struct Biol ; 78(Pt 6): 752-769, 2022 Jun 01.
Article in English | MEDLINE | ID: mdl-35647922

ABSTRACT

In macromolecular crystallography, radiation damage limits the amount of data that can be collected from a single crystal. It is often necessary to merge data sets from multiple crystals; for example, small-wedge data collections from micro-crystals, in situ room-temperature data collections and data collection from membrane proteins in lipidic mesophases. Whilst the indexing and integration of individual data sets may be relatively straightforward with existing software, merging multiple data sets from small wedges presents new challenges. The identification of a consensus symmetry can be problematic, particularly in the presence of a potential indexing ambiguity. Furthermore, the presence of non-isomorphous or poor-quality data sets may reduce the overall quality of the final merged data set. To facilitate and help to optimize the scaling and merging of multiple data sets, a new program, xia2.multiplex, has been developed which takes data sets individually integrated with DIALS and performs symmetry analysis, scaling and merging of multi-crystal data sets. xia2.multiplex also performs analysis of various pathologies that typically affect multi-crystal data sets, including non-isomorphism, radiation damage and preferential orientation. After the description of a number of use cases, the benefit of xia2.multiplex is demonstrated within a wider autoprocessing framework in facilitating a multi-crystal experiment collected as part of in situ room-temperature fragment-screening experiments on the SARS-CoV-2 main protease.


Subject(s)
COVID-19 , Crystallography, X-Ray , Data Analysis , Humans , Macromolecular Substances/chemistry , SARS-CoV-2
11.
J Med Chem ; 65(11): 7682-7696, 2022 06 09.
Article in English | MEDLINE | ID: mdl-35549342

ABSTRACT

The SARS-CoV-2 main protease (Mpro) is a medicinal chemistry target for COVID-19 treatment. Given the clinical efficacy of ß-lactams as inhibitors of bacterial nucleophilic enzymes, they are of interest as inhibitors of viral nucleophilic serine and cysteine proteases. We describe the synthesis of penicillin derivatives which are potent Mpro inhibitors and investigate their mechanism of inhibition using mass spectrometric and crystallographic analyses. The results suggest that ß-lactams have considerable potential as Mpro inhibitors via a mechanism involving reaction with the nucleophilic cysteine to form a stable acyl-enzyme complex as shown by crystallographic analysis. The results highlight the potential for inhibition of viral proteases employing nucleophilic catalysis by ß-lactams and related acylating agents.


Subject(s)
COVID-19 Drug Treatment , Cysteine , Antiviral Agents/chemistry , Antiviral Agents/pharmacology , Coronavirus 3C Proteases , Cysteine Endopeptidases/chemistry , Humans , Penicillins , Protease Inhibitors/chemistry , Protease Inhibitors/pharmacology , SARS-CoV-2 , beta-Lactams
12.
ChemMedChem ; 17(9): e202200016, 2022 05 04.
Article in English | MEDLINE | ID: mdl-35085423

ABSTRACT

The two SARS-CoV-2 proteases, i. e. the main protease (Mpro ) and the papain-like protease (PLpro ), which hydrolyze the viral polypeptide chain giving functional non-structural proteins, are essential for viral replication and are medicinal chemistry targets. We report a high-throughput mass spectrometry (MS)-based assay which directly monitors PLpro catalysis in vitro. The assay was applied to investigate the effect of reported small-molecule PLpro inhibitors and selected Mpro inhibitors on PLpro catalysis. The results reveal that some, but not all, PLpro inhibitor potencies differ substantially from those obtained using fluorescence-based assays. Some substrate-competing Mpro inhibitors, notably PF-07321332 (nirmatrelvir) which is in clinical development, do not inhibit PLpro . Less selective Mpro inhibitors, e. g. auranofin, inhibit PLpro , highlighting the potential for dual PLpro /Mpro inhibition. MS-based PLpro assays, which are orthogonal to widely employed fluorescence-based assays, are of utility in validating inhibitor potencies, especially for inhibitors operating by non-covalent mechanisms.


Subject(s)
COVID-19 , SARS-CoV-2 , Antiviral Agents/chemistry , Coronavirus Papain-Like Proteases , Humans , Lactams , Leucine , Mass Spectrometry , Nitriles , Peptide Hydrolases , Proline , Protease Inhibitors/pharmacology
13.
Chem Sci ; 12(41): 13686-13703, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34760153

ABSTRACT

The main protease (Mpro) of SARS-CoV-2 is central to viral maturation and is a promising drug target, but little is known about structural aspects of how it binds to its 11 natural cleavage sites. We used biophysical and crystallographic data and an array of biomolecular simulation techniques, including automated docking, molecular dynamics (MD) and interactive MD in virtual reality, QM/MM, and linear-scaling DFT, to investigate the molecular features underlying recognition of the natural Mpro substrates. We extensively analysed the subsite interactions of modelled 11-residue cleavage site peptides, crystallographic ligands, and docked COVID Moonshot-designed covalent inhibitors. Our modelling studies reveal remarkable consistency in the hydrogen bonding patterns of the natural Mpro substrates, particularly on the N-terminal side of the scissile bond. They highlight the critical role of interactions beyond the immediate active site in recognition and catalysis, in particular plasticity at the S2 site. Building on our initial Mpro-substrate models, we used predictive saturation variation scanning (PreSaVS) to design peptides with improved affinity. Non-denaturing mass spectrometry and other biophysical analyses confirm these new and effective 'peptibitors' inhibit Mpro competitively. Our combined results provide new insights and highlight opportunities for the development of Mpro inhibitors as anti-COVID-19 drugs.

15.
Sci Rep ; 11(1): 13208, 2021 06 24.
Article in English | MEDLINE | ID: mdl-34168183

ABSTRACT

Effective agents to treat coronavirus infection are urgently required, not only to treat COVID-19, but to prepare for future outbreaks. Repurposed anti-virals such as remdesivir and human anti-inflammatories such as barcitinib have received emergency approval but their overall benefits remain unclear. Vaccines are the most promising prospect for COVID-19, but will need to be redeveloped for any future coronavirus outbreak. Protecting against future outbreaks requires the identification of targets that are conserved between coronavirus strains and amenable to drug discovery. Two such targets are the main protease (Mpro) and the papain-like protease (PLpro) which are essential for the coronavirus replication cycle. We describe the discovery of two non-antiviral therapeutic agents, the caspase-1 inhibitor SDZ 224015 and Tarloxotinib that target Mpro and PLpro, respectively. These were identified through extensive experimental screens of the drug repurposing ReFRAME library of 12,000 therapeutic agents. The caspase-1 inhibitor SDZ 224015, was found to be a potent irreversible inhibitor of Mpro (IC50 30 nM) while Tarloxotinib, a clinical stage epidermal growth factor receptor inhibitor, is a sub micromolar inhibitor of PLpro (IC50 300 nM, Ki 200 nM) and is the first reported PLpro inhibitor with drug-like properties. SDZ 224015 and Tarloxotinib have both undergone safety evaluation in humans and hence are candidates for COVID-19 clinical evaluation.


Subject(s)
Antiviral Agents/chemistry , COVID-19 Drug Treatment , Coronavirus 3C Proteases/antagonists & inhibitors , Coronavirus Papain-Like Proteases/antagonists & inhibitors , Drug Repositioning , Oligopeptides/chemistry , Cell Line , Humans , Serpins/chemistry , Viral Proteins/chemistry
16.
Cell Chem Biol ; 28(12): 1795-1806.e5, 2021 12 16.
Article in English | MEDLINE | ID: mdl-34174194

ABSTRACT

Designing covalent inhibitors is increasingly important, although it remains challenging. Here, we present covalentizer, a computational pipeline for identifying irreversible inhibitors based on structures of targets with non-covalent binders. Through covalent docking of tailored focused libraries, we identify candidates that can bind covalently to a nearby cysteine while preserving the interactions of the original molecule. We found âˆ¼11,000 cysteines proximal to a ligand across 8,386 complexes in the PDB. Of these, the protocol identified 1,553 structures with covalent predictions. In a prospective evaluation, five out of nine predicted covalent kinase inhibitors showed half-maximal inhibitory concentration (IC50) values between 155 nM and 4.5 µM. Application against an existing SARS-CoV Mpro reversible inhibitor led to an acrylamide inhibitor series with low micromolar IC50 values against SARS-CoV-2 Mpro. The docking was validated by 12 co-crystal structures. Together these examples hint at the vast number of covalent inhibitors accessible through our protocol.


Subject(s)
Drug Design , Protein Kinase Inhibitors/chemistry , SARS-CoV-2/enzymology , Viral Matrix Proteins/antagonists & inhibitors , Acrylamide/chemistry , Acrylamide/metabolism , Binding Sites , COVID-19/pathology , COVID-19/virology , Catalytic Domain , Computational Biology/methods , Databases, Protein , Humans , Inhibitory Concentration 50 , Molecular Docking Simulation , Protein Kinase Inhibitors/metabolism , SARS-CoV-2/isolation & purification , Viral Matrix Proteins/metabolism
17.
Biochimie ; 185: 96-104, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33746066

ABSTRACT

Cancer cells exhibit an altered metabolic phenotype, consuming higher levels of the amino acid glutamine. This metabolic reprogramming depends on increased mitochondrial glutaminase activity to convert glutamine to glutamate, an essential precursor for bioenergetic and biosynthetic processes in cells. Mammals encode the kidney-type (GLS) and liver-type (GLS2) glutaminase isozymes. GLS is overexpressed in cancer and associated with enhanced malignancy. On the other hand, GLS2 is either a tumor suppressor or an oncogene, depending on the tumor type. The GLS structure and activation mechanism are well known, while the structural determinants for GLS2 activation remain elusive. Here, we describe the structure of the human glutaminase domain of GLS2, followed by the functional characterization of the residues critical for its activity. Increasing concentrations of GLS2 lead to tetramer stabilization, a process enhanced by phosphate. In GLS2, the so-called "lid loop" is in a rigid open conformation, which may be related to its higher affinity for phosphate and lower affinity for glutamine; hence, it has lower glutaminase activity than GLS. The lower affinity of GLS2 for glutamine is also related to its less electropositive catalytic site than GLS, as indicated by a Thr225Lys substitution within the catalytic site decreasing the GLS2 glutamine concentration corresponding to half-maximal velocity (K0.5). Finally, we show that the Lys253Ala substitution (corresponding to the Lys320Ala in the GLS "activation" loop, formerly known as the "gating" loop) renders a highly active protein in stable tetrameric form. We conclude that the "activation" loop, a known target for GLS inhibition, may also be a drug target for GLS2.


Subject(s)
Enzyme Activation , Glutaminase/chemistry , Liver/enzymology , Amino Acid Substitution , Catalysis , Glutaminase/genetics , Glutaminase/metabolism , Humans , Mutation, Missense , Protein Structure, Quaternary , Structure-Activity Relationship
18.
Chem Commun (Camb) ; 57(12): 1430-1433, 2021 Feb 15.
Article in English | MEDLINE | ID: mdl-33462575

ABSTRACT

The main viral protease (Mpro) of SARS-CoV-2 is a nucleophilic cysteine hydrolase and a current target for anti-viral chemotherapy. We describe a high-throughput solid phase extraction coupled to mass spectrometry Mpro assay. The results reveal some ß-lactams, including penicillin esters, are active site reacting Mpro inhibitors, thus highlighting the potential of acylating agents for Mpro inhibition.


Subject(s)
Antiviral Agents/pharmacology , Cysteine Endopeptidases/drug effects , Mass Spectrometry/methods , Protease Inhibitors/pharmacology , SARS-CoV-2/drug effects , beta-Lactams/pharmacology , Acylation , Antiviral Agents/chemistry , COVID-19/virology , Catalytic Domain , High-Throughput Screening Assays , Humans , Molecular Docking Simulation , Molecular Dynamics Simulation , Protease Inhibitors/chemistry , SARS-CoV-2/enzymology , beta-Lactams/chemistry
19.
Methods Mol Biol ; 2199: 23-43, 2021.
Article in English | MEDLINE | ID: mdl-33125643

ABSTRACT

Structural genomics groups have identified the need to generate multiple truncated versions of each target to improve their success in producing a well-expressed, soluble, and stable protein and one that crystallizes and diffracts to a sufficient resolution for structural determination. At the Structural Genomics Consortium, we opted for the ligation-independent cloning (LIC) method which provides the throughput we desire to produce and screen many proteins in a parallel process. Here, we describe our LIC protocol for generating constructs in 96-well format and provide a choice of vectors suitable for expressing proteins in both E. coli and the baculovirus expression vector system (BEVS).


Subject(s)
Baculoviridae/genetics , Cloning, Molecular , Escherichia coli , Gene Expression , Genetic Vectors/genetics , Recombinant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics
20.
Methods Mol Biol ; 2199: 45-66, 2021.
Article in English | MEDLINE | ID: mdl-33125644

ABSTRACT

In Chapter 3 , we described the Structural Genomics Consortium (SGC) process for generating multiple constructs of truncated versions of each protein using LIC. In this chapter we provide a step-by-step procedure of our E. coli system for test expressing intracellular (soluble) proteins in a 96-well format that enables us to identify which proteins or truncated versions are expressed in a soluble and stable form suitable for structural studies. In addition, we detail the process for scaling up cultures for large-scale protein purification. This level of production is required to obtain sufficient quantities (i.e., milligram amounts) of protein for further characterization and/or structural studies (e.g., crystallization or cryo-EM experiments). Our standard process is purification by immobilized metal affinity chromatography (IMAC) using nickel resin followed by size exclusion chromatography (SEC), with additional procedures arising from the complexity of the protein itself.


Subject(s)
Chromatography, Affinity , Chromatography, Gel , Escherichia coli , Recombinant Proteins , Escherichia coli/genetics , Escherichia coli/metabolism , Humans , Recombinant Proteins/biosynthesis , Recombinant Proteins/genetics , Recombinant Proteins/isolation & purification
SELECTION OF CITATIONS
SEARCH DETAIL
...