Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
1.
Article in English | MEDLINE | ID: mdl-38663031

ABSTRACT

Clinical genetic laboratories must have access to clinically validated biomedical data for precision medicine. A lack of accessibility, normalized structure, and consistency in evaluation complicates interpretation of disease causality, resulting in confusion in assessing the clinical validity of genes and genetic variants for diagnosis. A key goal of the Clinical Genome Resource (ClinGen) is to fill the knowledge gap concerning the strength of evidence supporting the role of a gene in a monogenic disease, which is achieved through a process known as Gene-Disease Validity curation. Here we review the work of ClinGen in developing a curation infrastructure that supports the standardization, harmonization, and dissemination of Gene-Disease Validity data through the creation of frameworks and the utilization of common data standards. This infrastructure is based on several applications, including the ClinGen GeneTracker, Gene Curation Interface, Data Exchange, GeneGraph, and website.

2.
HGG Adv ; 5(1): 100242, 2024 Jan 11.
Article in English | MEDLINE | ID: mdl-37777824

ABSTRACT

Pathogenic or likely pathogenic (P/LP) germline TP53 variants are the primary cause of Li-Fraumeni syndrome (LFS), a hereditary cancer predisposition disorder characterized by early-onset cancers. The population prevalence of P/LP germline TP53 variants is estimated to be approximately one in every 3,500 to 20,000 individuals. However, these estimates are likely impacted by ascertainment biases and lack of clinical and genetic data to account for potential confounding factors, such as clonal hematopoiesis. Genome-first approaches of cohorts linked to phenotype data can further refine these estimates by identifying individuals with variants of interest and then assessing their phenotypes. This study evaluated P/LP germline (variant allele fraction ≥30%) TP53 variants in three cohorts: UK Biobank (UKB, n = 200,590), Geisinger (n = 170,503), and Penn Medicine Biobank (PMBB, n = 43,731). A total of 109 individuals were identified with P/LP germline TP53 variants across the three databases. The TP53 p.R181H variant was the most frequently identified (9 of 109 individuals, 8%). A total of 110 cancers, including 47 hematologic cancers (47 of 110, 43%), were reported in 71 individuals. The prevalence of P/LP germline TP53 variants was conservatively estimated as 1:10,439 in UKB, 1:3,790 in Geisinger, and 1:2,983 in PMBB. These estimates were calculated after excluding related individuals and accounting for the potential impact of clonal hematopoiesis by excluding heterozygotes who ever developed a hematologic cancer. These varying estimates likely reflect intrinsic selection biases of each database, such as healthcare or population-based contexts. Prospective studies of diverse, young cohorts are required to better understand the population prevalence of germline TP53 variants and their associated cancer penetrance.


Subject(s)
Li-Fraumeni Syndrome , Tumor Suppressor Protein p53 , Humans , Tumor Suppressor Protein p53/genetics , Prevalence , Prospective Studies , Li-Fraumeni Syndrome/epidemiology , Genetic Predisposition to Disease/genetics , Phenotype , Germ Cells
3.
Kidney Int Rep ; 8(10): 2088-2099, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37849993

ABSTRACT

Introduction: The penetrance and phenotypic spectrum of autosomal dominant Alport Syndrome (ADAS), affecting 1 in 106, remains understudied. Methods: Using data from 174,418 participants in the Geisinger MyCode/DiscovEHR study, an unselected health system-based cohort with whole exome sequencing, we identified 403 participants who were heterozygous for likely pathogenic COL4A3 variants. Phenotypic data was evaluated using International Classification of Diseases (ICD) codes, laboratory data, and chart review. To evaluate the phenotypic spectrum of genetically-determined ADAS, we matched COL4A3 heterozygotes 1:5 to nonheterozygotes using propensity scores by demographics, hypertension, diabetes, and nephrolithiasis. Results: COL4A3 heterozygotes were at significantly increased risks of hematuria, decreased estimated glomerular filtration rate (eGFR), albuminuria, and kidney failure (P < 0.05 for all comparisons) but not bilateral sensorineural hearing loss (P = 0.9). Phenotypic severity was more severe for collagenous domain glycine missense variants than protein truncating variants (PTVs). For example, patients with Gly695Arg (n = 161) had markedly increased risk of dipstick hematuria (odds ratio [OR] 9.50; 95% confidence interval [CI]: 6.32, 14.28) and kidney failure (OR 7.02; 95% CI: 3.48, 14.16) whereas those with PTVs (n = 119) had moderately increased risks of dipstick hematuria (OR 1.64; 95% CI: 1.03, 2.59) and kidney failure (OR 3.44; 95% CI: 1.28, 9.22). Less than a third of patients had albuminuria screening completed, and fewer than 1 of 3 were taking inhibitors of the renin-angiotensin-aldosterone system. Conclusion: This study demonstrates a wide spectrum of phenotypic severity in ADAS due to COL4A3 with phenotypic variability by genotype. Future studies are needed to evaluate the impact of earlier diagnosis, appropriate evaluation, and treatment of ADAS.

5.
J Am Heart Assoc ; 12(13): e030073, 2023 07 04.
Article in English | MEDLINE | ID: mdl-37382153

ABSTRACT

Background Data mining of electronic health records to identify patients suspected of familial hypercholesterolemia (FH) has been limited by absence of both phenotypic and genomic data in the same cohort. Methods and Results Using the Geisinger MyCode Community Health Initiative cohort (n=130 257), we ran 2 screening algorithms (Mayo Clinic [Mayo] and flag, identify, network, deliver [FIND] FH) to determine FH genetic and phenotypic diagnostic yields. With 29 243 excluded by Mayo (for secondary causes of hypercholesterolemia, no lipid value in electronic health records), 52 034 excluded by FIND FH (insufficient data to run the model), and 187 excluded for prior FH diagnosis, a final cohort of 59 729 participants was created. Genetic diagnosis was based on presence of a pathogenic or likely pathogenic variant in FH genes. Charts from 180 variant-negative participants (60 controls, 120 identified by FIND FH and Mayo) were reviewed to calculate Dutch Lipid Clinic Network scores; a score ≥5 defined probable phenotypic FH. Mayo flagged 10 415 subjects; 194 (1.9%) had a pathogenic or likely pathogenic FH variant. FIND FH flagged 573; 34 (5.9%) had a pathogenic or likely pathogenic variant, giving a net yield from both of 197 out of 280 (70%). Confirmation of a phenotypic diagnosis was constrained by lack of electronic health record data on physical findings or family history. Phenotypic FH by chart review was present by Mayo and/or FIND FH in 13 out of 120 versus 2 out of 60 not flagged by either (P<0.09). Conclusions Applying 2 recognized FH screening algorithms to the Geisinger MyCode Community Health Initiative identified 70% of those with a pathogenic or likely pathogenic FH variant. Phenotypic diagnosis was rarely achievable due to missing data.


Subject(s)
Hypercholesterolemia , Hyperlipoproteinemia Type II , Humans , Electronic Health Records , Hyperlipoproteinemia Type II/diagnosis , Hyperlipoproteinemia Type II/epidemiology , Hyperlipoproteinemia Type II/genetics
6.
medRxiv ; 2023 Apr 24.
Article in English | MEDLINE | ID: mdl-37163122

ABSTRACT

Most data on Alport Syndrome (AS) due to COL4A3 are limited to families with autosomal recessive AS or severe manifestations such as focal segmental glomerulosclerosis (FSGS). Using data from 174,418 participants in the Geisinger MyCode/DiscovEHR study, an unselected health system-based cohort with whole exome sequencing, we identified 403 participants (0.2%) who were heterozygous for likely pathogenic COL4A3 variants. Phenotypic data was evaluated using International Classification of Diseases (ICD) codes, laboratory data, and chart review. To evaluate the phenotypic spectrum of genetically-determined autosomal dominant AS, we matched COL4A3 heterozygotes 1:5 to non-heterozygotes using propensity scores by demographics, hypertension, diabetes, and nephrolithiasis. COL4A3 heterozygotes were at significantly increased risks of hematuria, decreased estimated glomerular filtration rate (eGFR), albuminuria, and end-stage kidney disease (ESKD) (p<0.05 for all comparisons) but not bilateral sensorineural hearing loss (p=0.9). Phenotypic severity tended to be more severe among patients with glycine missense variants located within the collagenous domain. For example, patients with Gly695Arg (n=161) had markedly increased risk of dipstick hematuria (OR 9.47, 95% CI: 6.30, 14.22) and ESKD diagnosis (OR 7.01, 95% CI: 3.48, 14.12) whereas those with PTVs (n=119) had moderately increased risks of dipstick hematuria (OR 1.63, 95% CI: 1.03, 2.58) and ESKD diagnosis (OR 3.43, 95% CI: 1.28, 9.19). Less than a third of patients had albuminuria screening completed, and fewer than 1/3 were taking inhibitors of the renin-angiotensin-aldosterone system (RAASi). Future studies are needed to evaluate the impact of earlier diagnosis, appropriate evaluation, and treatment of ADAS.

7.
JAMA ; 329(4): 318-324, 2023 01 24.
Article in English | MEDLINE | ID: mdl-36692560

ABSTRACT

Importance: VEXAS (vacuoles, E1-ubiquitin-activating enzyme, X-linked, autoinflammatory, somatic) syndrome is a disease with rheumatologic and hematologic features caused by somatic variants in UBA1. Pathogenic variants are associated with a broad spectrum of clinical manifestations. Knowledge of prevalence, penetrance, and clinical characteristics of this disease have been limited by ascertainment biases based on known phenotypes. Objective: To determine the prevalence of pathogenic variants in UBA1 and associated clinical manifestations in an unselected population using a genomic ascertainment approach. Design, Setting, and Participants: This retrospective observational study evaluated UBA1 variants in exome data from 163 096 participants within the Geisinger MyCode Community Health Initiative. Clinical phenotypes were determined from Geisinger electronic health record data from January 1, 1996, to January 1, 2022. Exposures: Exome sequencing was performed. Main Outcomes and Measures: Outcome measures included prevalence of somatic UBA1 variation; presence of rheumatologic, hematologic, pulmonary, dermatologic, and other findings in individuals with somatic UBA1 variation on review of the electronic health record; review of laboratory data; bone marrow biopsy pathology analysis; and in vitro enzymatic assays. Results: In 163 096 participants (mean age, 52.8 years; 94% White; 61% women), 11 individuals harbored likely somatic variants at known pathogenic UBA1 positions, with 11 of 11 (100%) having clinical manifestations consistent with VEXAS syndrome (9 male, 2 female). A total of 5 of 11 individuals (45%) did not meet criteria for rheumatologic and/or hematologic diagnoses previously associated with VEXAS syndrome; however, all individuals had anemia (hemoglobin: mean, 7.8 g/dL; median, 7.5 g/dL), which was mostly macrocytic (10/11 [91%]) with concomitant thrombocytopenia (10/11 [91%]). Among the 11 patients identified, there was a pathogenic variant in 1 male participant prior to onset of VEXAS-related signs or symptoms and 2 female participants had disease with heterozygous variants. A previously unreported UBA1 variant (c.1861A>T; p.Ser621Cys) was found in a symptomatic patient, with in vitro data supporting a catalytic defect and pathogenicity. Together, disease-causing UBA1 variants were found in 1 in 13 591 unrelated individuals (95% CI, 1:7775-1:23 758), 1 in 4269 men older than 50 years (95% CI, 1:2319-1:7859), and 1 in 26 238 women older than 50 years (95% CI, 1:7196-1:147 669). Conclusions and Relevance: This study provides an estimate of the prevalence and a description of the clinical manifestations of UBA1 variants associated with VEXAS syndrome within a single regional health system in the US. Additional studies are needed in unselected and genetically diverse populations to better define general population prevalence and phenotypic spectrum.


Subject(s)
Myelodysplastic Syndromes , Skin Diseases, Genetic , Ubiquitin-Activating Enzymes , Female , Humans , Male , Biopsy , Electronic Health Records , Prevalence , Myelodysplastic Syndromes/complications , Myelodysplastic Syndromes/diagnosis , Myelodysplastic Syndromes/epidemiology , Myelodysplastic Syndromes/genetics , Ubiquitin-Activating Enzymes/genetics , Mutation , Retrospective Studies , Exome , Middle Aged , Skin Diseases, Genetic/complications , Skin Diseases, Genetic/diagnosis , Skin Diseases, Genetic/epidemiology , Skin Diseases, Genetic/genetics , United States/epidemiology
8.
Kidney Int ; 103(3): 607-615, 2023 03.
Article in English | MEDLINE | ID: mdl-36574950

ABSTRACT

ALG8 protein-truncating variants (PTVs) have previously been described in patients with polycystic liver disease and in some cases cystic kidney disease. Given a lack of well-controlled studies, we determined whether individuals heterozygous for ALG8 PTVs are at increased risk of cystic kidney disease in a large, unselected health system-based observational cohort linked to electronic health records in Pennsylvania (Geisinger-Regeneron DiscovEHR MyCode study). Out of 174,172 patients, 236 were identified with ALG8 PTVs. Using ICD-based outcomes, patients with these variants were significantly at increased risk of having any kidney/liver cyst diagnosis (Odds Ratio 2.42, 95% confidence interval: 1.53-3.85), cystic kidney disease (3.03, 1.26-7.31), and nephrolithiasis (1.89, 1.96-2.97). To confirm this finding, blinded radiology review of computed tomography and magnetic resonance imaging studies was completed in a matched cohort of 52 thirty-plus year old ALG8 PTV heterozygotes and related non-heterozygotes. ALG8 PTV heterozygotes were significantly more likely to have cystic kidney disease, defined as four or more kidney cysts (57.7% vs. 7.7%), or bilateral kidney cysts (69.2% vs. 15.4%), but not one or more liver cyst (11.5% vs. 7.7%). In publicly available UK Biobank data, ALG8 PTV heterozygotes were at significantly increased risk of ICD code N28 (other disorders of kidney/ureter) (3.85% vs. 1.33%). ALG8 PTVs were not associated with chronic kidney disease or kidney failure in the MyCode study or the UK Biobank data. Thus, PTVs in ALG8 result in increased risk of a mild cystic kidney disease phenotype.


Subject(s)
Cysts , Liver Diseases , Polycystic Kidney Diseases , Polycystic Kidney, Autosomal Dominant , Humans , Polycystic Kidney Diseases/pathology , Kidney/pathology , Cysts/genetics , Liver Diseases/diagnosis , Liver Diseases/epidemiology , Liver Diseases/genetics , Polycystic Kidney, Autosomal Dominant/diagnosis , Polycystic Kidney, Autosomal Dominant/epidemiology , Polycystic Kidney, Autosomal Dominant/genetics , Glucosyltransferases
9.
Front Genet ; 13: 883073, 2022.
Article in English | MEDLINE | ID: mdl-35692820

ABSTRACT

Introduction: DNA-based population screening has been proposed as a public health solution to identify individuals at risk for serious health conditions who otherwise may not present for medical care. The clinical utility and public health impact of DNA-based population screening is a subject of active investigation. Geisinger, an integrated healthcare delivery system, was one of the first healthcare systems to implement DNA screening programs (MyCode Community Health Initiative (MyCode) and clinical DNA screening pilot) that leverage exome data to identify individuals at risk for developing conditions with potential clinical actionability. Here, we demonstrate the use of an implementation science framework, RE-AIM (Reach, Effectiveness, Adoption, Implementation and Maintenance), to conduct a post-hoc evaluation and report outcomes from these two programs to inform the potential impact of DNA-based population screening. Methods: Reach and Effectiveness outcomes were determined from the MyCode research program, while Adoption and Implementation outcomes were measured using the clinical DNA screening pilot. Reach was defined as the number of patients who were offered and consented to participate in MyCode. Effectiveness of DNA screening was measured by reviewing MyCode program publications and synthesizing findings from themes. Adoption was measured by the total number of DNA screening tests ordered by clinicians at the clinical pilot sites. Implementation was assessed by interviewing a subset of clinical pilot clinicians about the deployment of and recommended adaptations to the pilot that could inform future program dissemination. Results: Reach: As of August 2020, 68% (215,078/316,612) of individuals approached to participate in the MyCode program consented. Effectiveness: Published evidence reported from MyCode demonstrates that DNA screening identifies at-risk individuals more comprehensively than clinical ascertainment based on phenotypes or personal/family history. Adoption: From July 2018 to June 2021, a total of 1,026 clinical DNA screening tests were ordered by 60 clinicians across the three pilot clinic sites. Implementation: Interviews with 14 clinicians practicing at the pilot clinic sites revealed motivation to provide patients with DNA screening results and yielded future implementation strategies. Conclusion: The RE-AIM framework offers a pragmatic solution to organize, analyze, and report outcomes across differently resourced and designed precision health programs that include genomic sequencing and return of clinically actionable genomic information.

10.
Genet Med ; 24(9): 1857-1866, 2022 09.
Article in English | MEDLINE | ID: mdl-35639097

ABSTRACT

PURPOSE: Penetrance estimates of Birt-Hogg-Dubé syndrome (BHD)-associated cutaneous, pulmonary, and kidney manifestations are based on clinically ascertained families. In a health care system population, we used a genetics-first approach to estimate the prevalence of pathogenic/likely pathogenic (P/LP) truncating variants in FLCN, which cause BHD, and the penetrance of BHD-related phenotypes. METHODS: Exomes from 135,990 patient-participants in Geisinger's MyCode cohort were assessed for P/LP truncating FLCN variants. BHD-related phenotypes were evaluated from electronic health records. Association between P/LP FLCN variants and BHD-related phenotypes was assessed using Firth's logistic regression. RESULTS: P/LP truncating FLCN variants were identified in 35 individuals (1 in 3234 unrelated individuals), 68.6% of whom had BHD-related phenotype(s), including cystic lung disease (65.7%), pneumothoraces (17.1%), cutaneous manifestations (8.6%), and kidney cancer (2.9%). A total of 4 (11.4%) individuals had prior clinical BHD diagnoses. CONCLUSION: In this health care population, the frequency of P/LP truncating FLCN variants is 60 times higher than the previously reported prevalence. Although most variant-positive individuals had BHD-related phenotypes, a minority were previously clinically diagnosed, likely because cutaneous manifestations, pneumothoraces, and kidney cancer were observed at lower frequencies than in clinical cohorts. Improved clinical recognition of cystic lung disease and education concerning its association with FLCN variants could prompt evaluation for BHD.


Subject(s)
Birt-Hogg-Dube Syndrome , Cysts , Kidney Neoplasms , Lung Diseases , Pneumothorax , Proto-Oncogene Proteins/genetics , Skin Diseases , Birt-Hogg-Dube Syndrome/complications , Birt-Hogg-Dube Syndrome/epidemiology , Birt-Hogg-Dube Syndrome/genetics , Cysts/complications , Cysts/pathology , Delivery of Health Care , Humans , Kidney Neoplasms/complications , Lung Diseases/complications , Lung Diseases/pathology , Phenotype , Pneumothorax/complications , Pneumothorax/genetics , Skin Diseases/genetics , Tumor Suppressor Proteins/genetics
11.
PLoS Genet ; 18(1): e1009884, 2022 01.
Article in English | MEDLINE | ID: mdl-35051175

ABSTRACT

To determine the contribution of defective splicing in Autism Spectrum Disorders (ASD), the most common neurodevelopmental disorder, a high throughput Massively Parallel Splicing Assay (MaPSY) was employed and identified 42 exonic splicing mutants out of 725 coding de novo variants discovered in the sequencing of ASD families. A redesign of the minigene constructs in MaPSY revealed that upstream exons with strong 5' splice sites increase the magnitude of skipping phenotypes observed in downstream exons. Select hits were validated by RT-PCR and amplicon sequencing in patient cell lines. Exonic splicing mutants were enriched in probands relative to unaffected siblings -especially synonymous variants (7.5% vs 3.5%, respectively). Of the 26 genes disrupted by exonic splicing mutations, 6 were in known ASD genes and 3 were in paralogs of known ASD genes. Of particular interest was a synonymous variant in TNRC6C - an ASD gene paralog with interactions with other ASD genes. Clinical records of 3 ASD patients with TNRC6C variant revealed respiratory issues consistent with phenotypes observed in TNRC6 depleted mice. Overall, this study highlights the need for splicing analysis in determining variant pathogenicity, especially as it relates to ASD.


Subject(s)
Autism Spectrum Disorder/genetics , Mutation , RNA Splicing , Cell Line , Exons , Gene Regulatory Networks , Genetic Predisposition to Disease , Humans , Pedigree , Phenotype , RNA-Binding Proteins , Silent Mutation
12.
Am J Med Genet C Semin Med Genet ; 187(1): 83-94, 2021 03.
Article in English | MEDLINE | ID: mdl-33576083

ABSTRACT

Exome and genome sequencing are increasingly utilized in research studies and clinical care and can provide clinically relevant information beyond the initial intent for sequencing, including medically actionable secondary findings. Despite ongoing debate about sharing this information with patients and participants, a growing number of clinical laboratories and research programs routinely report secondary findings that increase the risk for selected diseases. Recently, there has been a push to maximize the potential benefit of this practice by implementing proactive genomic screening at the population level irrespective of medical history, but the feasibility of deploying population-scale proactive genomic screening requires scaling key elements of the genomic data evaluation process. Herein, we describe the motivation, development, and implementation of a population-scale variant-first screening pipeline combining bioinformatics-based filtering with a manual review process to screen for clinically relevant findings in research exomes generated through the DiscovEHR collaboration within Geisinger's MyCode® research project. Consistent with other studies, this pipeline yields a screen-positive detection rate between 2.1 and 2.6% (depending on inclusion of those with prior indication-based testing) in 130,048 adult MyCode patient-participants screened for clinically relevant findings in 60 genes. Our variant-first pipeline affords cost and time savings by filtering out negative cases, thereby avoiding analysis of each exome one-by-one, as typically employed in the diagnostic setting. While research is still needed to fully appreciate the benefits of population genomic screening, MyCode provides the first demonstration of a program at scale to help shape how population genomic screening is integrated into routine clinical care.


Subject(s)
Exome Sequencing , Exome , Genomics , Adult , Humans , Longitudinal Studies
13.
Circ Genom Precis Med ; 14(1): e003120, 2021 02.
Article in English | MEDLINE | ID: mdl-33480803

ABSTRACT

BACKGROUND: Familial hypercholesterolemia (FH) is the most common cardiovascular genetic disorder and, if left untreated, is associated with increased risk of premature atherosclerotic cardiovascular disease, the leading cause of preventable death in the United States. Although FH is common, fatal, and treatable, it is underdiagnosed and undertreated due to a lack of systematic methods to identify individuals with FH and limited uptake of cascade testing. METHODS AND RESULTS: This mixed-method, multi-stage study will optimize, test, and implement innovative approaches for both FH identification and cascade testing in 3 aims. To improve identification of individuals with FH, in Aim 1, we will compare and refine automated phenotype-based and genomic approaches to identify individuals likely to have FH. To improve cascade testing uptake for at-risk individuals, in Aim 2, we will use a patient-centered design thinking process to optimize and develop novel, active family communication methods. Using a prospective, observational pragmatic trial, we will assess uptake and effectiveness of each family communication method on cascade testing. Guided by an implementation science framework, in Aim 3, we will develop a comprehensive guide to identify individuals with FH. Using the Conceptual Model for Implementation Research, we will evaluate implementation outcomes including feasibility, acceptability, and perceived sustainability as well as health outcomes related to the optimized methods and tools developed in Aims 1 and 2. CONCLUSIONS: Data generated from this study will address barriers and gaps in care related to underdiagnosis of FH by developing and optimizing tools to improve FH identification and cascade testing.


Subject(s)
Genetic Testing/methods , Hyperlipoproteinemia Type II/diagnosis , Apolipoprotein B-100/genetics , Databases, Genetic , Humans , Hyperlipoproteinemia Type II/genetics , Patient-Centered Care , Proprotein Convertase 9/genetics , Receptors, LDL/genetics
14.
PLoS One ; 15(11): e0242182, 2020.
Article in English | MEDLINE | ID: mdl-33180868

ABSTRACT

BACKGROUND: Empirical data on conditions that increase risk of coronavirus disease 2019 (COVID-19) progression are needed to identify high risk individuals. We performed a comprehensive quantitative assessment of pre-existing clinical phenotypes associated with COVID-19-related hospitalization. METHODS: Phenome-wide association study (PheWAS) of SARS-CoV-2-positive patients from an integrated health system (Geisinger) with system-level outpatient/inpatient COVID-19 testing capacity and retrospective electronic health record (EHR) data to assess pre-COVID-19 pandemic clinical phenotypes associated with hospital admission (hospitalization). RESULTS: Of 12,971 individuals tested for SARS-CoV-2 with sufficient pre-COVID-19 pandemic EHR data at Geisinger, 1604 were SARS-CoV-2 positive and 354 required hospitalization. We identified 21 clinical phenotypes in 5 disease categories meeting phenome-wide significance (P<1.60x10-4), including: six kidney phenotypes, e.g. end stage renal disease or stage 5 CKD (OR = 11.07, p = 1.96x10-8), six cardiovascular phenotypes, e.g. congestive heart failure (OR = 3.8, p = 3.24x10-5), five respiratory phenotypes, e.g. chronic airway obstruction (OR = 2.54, p = 3.71x10-5), and three metabolic phenotypes, e.g. type 2 diabetes (OR = 1.80, p = 7.51x10-5). Additional analyses defining CKD based on estimated glomerular filtration rate, confirmed high risk of hospitalization associated with pre-existing stage 4 CKD (OR 2.90, 95% CI: 1.47, 5.74), stage 5 CKD/dialysis (OR 8.83, 95% CI: 2.76, 28.27), and kidney transplant (OR 14.98, 95% CI: 2.77, 80.8) but not stage 3 CKD (OR 1.03, 95% CI: 0.71, 1.48). CONCLUSIONS: This study provides quantitative estimates of the contribution of pre-existing clinical phenotypes to COVID-19 hospitalization and highlights kidney disorders as the strongest factors associated with hospitalization in an integrated US healthcare system.


Subject(s)
Coronavirus Infections/epidemiology , Hospitalization/statistics & numerical data , Kidney Diseases/epidemiology , Pneumonia, Viral/epidemiology , Adult , Aged , Aged, 80 and over , Betacoronavirus , COVID-19 , Electronic Health Records , Female , Humans , Kidney Failure, Chronic/epidemiology , Male , Middle Aged , Pandemics , Pennsylvania/epidemiology , Renal Dialysis , Renal Insufficiency, Chronic/epidemiology , Retrospective Studies , Risk Factors , SARS-CoV-2
15.
Am J Hum Genet ; 107(4): 596-611, 2020 10 01.
Article in English | MEDLINE | ID: mdl-32853555

ABSTRACT

Newborn screening (NBS) was established as a public health program in the 1960s and is crucial for facilitating detection of certain medical conditions in which early intervention can prevent serious, life-threatening health problems. Genomic sequencing can potentially expand the screening for rare hereditary disorders, but many questions surround its possible use for this purpose. We examined the use of exome sequencing (ES) for NBS in the North Carolina Newborn Exome Sequencing for Universal Screening (NC NEXUS) project, comparing the yield from ES used in a screening versus a diagnostic context. We enrolled healthy newborns and children with metabolic diseases or hearing loss (106 participants total). ES confirmed the participant's underlying diagnosis in 15 out of 17 (88%) children with metabolic disorders and in 5 out of 28 (∼18%) children with hearing loss. We discovered actionable findings in four participants that would not have been detected by standard NBS. A subset of parents was eligible to receive additional information for their child about childhood-onset conditions with low or no clinical actionability, clinically actionable adult-onset conditions, and carrier status for autosomal-recessive conditions. We found pathogenic variants associated with hereditary breast and/or ovarian cancer in two children, a likely pathogenic variant in the gene associated with Lowe syndrome in one child, and an average of 1.8 reportable variants per child for carrier results. These results highlight the benefits and limitations of using genomic sequencing for NBS and the challenges of using such technology in future precision medicine approaches.


Subject(s)
Breast Neoplasms/diagnosis , Genetic Testing/statistics & numerical data , Hearing Loss/diagnosis , Metabolic Diseases/diagnosis , Oculocerebrorenal Syndrome/diagnosis , Ovarian Neoplasms/diagnosis , Breast Neoplasms/genetics , Child, Preschool , Female , Genome, Human , Hearing Loss/genetics , Heterozygote , Humans , Infant , Infant, Newborn , Male , Metabolic Diseases/genetics , Neonatal Screening , North Carolina , Oculocerebrorenal Syndrome/genetics , Ovarian Neoplasms/genetics , Public Health/methods , Exome Sequencing
17.
Genet Med ; 22(5): 954-961, 2020 05.
Article in English | MEDLINE | ID: mdl-31974414

ABSTRACT

PURPOSE: We investigated the diagnostic and clinical performance of trio exome sequencing (ES) in parent-fetus trios where the fetus had sonographic abnormalities but normal karyotype, microarray and, in some cases, normal gene-specific sequencing. METHODS: ES was performed from DNA of 102 anomalous fetuses and from peripheral blood from their parents. Parents provided consent for the return of diagnostic results in the fetus, medically actionable findings in the parents, and identification as carrier couple for significant autosomal recessive conditions. RESULTS: In 21/102 (20.6%) fetuses, ES provided a positive-definitive or positive-probable diagnosis. In 10/102 (9.8%), ES provided an inconclusive-possible result. At least 2/102 (2.0%) had a repeat pregnancy during the study period and used the information from the study for prenatal diagnosis in the next pregnancy. Six of 204 (2.9%) parents received medically actionable results that affected their own health and 3/102 (2.9%) of couples received results that they were carriers for the same autosomal recessive condition. CONCLUSION: ES has diagnostic utility in a select population of fetuses where a genetic diagnosis was highly suspected. Challenges related to genetics literacy, variant interpretation, and various types of diagnostic results affecting both fetal and parental health must be addressed by highly tailored pre- and post-test genetic counseling.


Subject(s)
Exome , Ultrasonography, Prenatal , Exome/genetics , Female , Humans , Pregnancy , Pregnancy Trimester, First , Prenatal Diagnosis , Exome Sequencing
18.
J Pediatr ; 209: 68-76, 2019 06.
Article in English | MEDLINE | ID: mdl-30851990

ABSTRACT

OBJECTIVE: To assess the performance of a standardized, age-based metric for scoring clinical actionability to evaluate conditions for inclusion in newborn screening and compare it with the results from other contemporary methods. STUDY DESIGN: The North Carolina Newborn Exome Sequencing for Universal Screening study developed an age-based, semiquantitative metric to assess the clinical actionability of gene-disease pairs and classify them with respect to age of onset or timing of interventions. This categorization was compared with the gold standard Recommended Uniform Screening Panel and other methods to evaluate gene-disease pairs for newborn genomic sequencing. RESULTS: We assessed 822 gene-disease pairs, enriched for pediatric onset of disease and suspected actionability. Of these, 466 were classified as having childhood onset and high actionability, analogous to conditions selected for the Recommended Uniform Screening Panel core panel. Another 245 were classified as having childhood onset and low to no actionability, 25 were classified as having adult onset and high actionability, 19 were classified as having adult onset and low to no actionability, and 67 were excluded due to controversial evidence and/or prenatal onset. CONCLUSIONS: This study describes a novel method to facilitate decisions about the potential use of genomic sequencing for newborn screening. These categories may assist parents and physicians in making informed decisions about the disclosure of results from voluntary genomic sequencing in children.


Subject(s)
Chromosome Mapping/methods , Genetic Diseases, Inborn/diagnosis , Genetic Testing/methods , Neonatal Screening/methods , Sequence Analysis, DNA/methods , Decision Making, Shared , Female , Genetic Diseases, Inborn/epidemiology , Genome, Human , Humans , Infant, Newborn , Male , North Carolina , Exome Sequencing
19.
Circ Genom Precis Med ; 12(2): e002460, 2019 02.
Article in English | MEDLINE | ID: mdl-30681346

ABSTRACT

BACKGROUND: Genetic testing for families with hypertrophic cardiomyopathy (HCM) provides a significant opportunity to improve care. Recent trends to increase gene panel sizes often mean variants in genes with questionable association are reported to patients. Classification of HCM genes and variants is critical, as misclassification can lead to genetic misdiagnosis. We show the validity of previously reported HCM genes using an established method for evaluating gene-disease associations. METHODS: A systematic approach was used to assess the validity of reported gene-disease associations, including associations with isolated HCM and syndromes including left ventricular hypertrophy. Genes were categorized as having definitive, strong, moderate, limited, or no evidence of disease causation. We also reviewed current variant classifications for HCM in ClinVar, a publicly available variant resource. RESULTS: Fifty-seven genes were selected for curation based on their frequent inclusion in HCM testing and prior association reports. Of 33 HCM genes, only 8 (24%) were categorized as definitive ( MYBPC3, MYH7, TNNT2, TNNI3, TPM1, ACTC1, MYL2, and MYL3); 3 had moderate evidence ( CSRP3, TNNC1, and JPH2; 33%); and 22 (66%) had limited (n=16) or no evidence (n=6). There were 12 of 24 syndromic genes definitively associated with isolated left ventricular hypertrophy. Of 4191 HCM variants in ClinVar, 31% were in genes with limited or no evidence of disease association. CONCLUSIONS: The majority of genes previously reported as causative of HCM and commonly included in diagnostic tests have limited or no evidence of disease association. Systematically curated HCM genes are essential to guide appropriate reporting of variants and ensure the best possible outcomes for HCM families.


Subject(s)
Cardiomyopathy, Hypertrophic, Familial/genetics , Genetic Predisposition to Disease/genetics , Cardiomyopathy, Hypertrophic, Familial/diagnosis , Genetic Testing , Humans , Phenotype
20.
PLoS One ; 13(12): e0209185, 2018.
Article in English | MEDLINE | ID: mdl-30557390

ABSTRACT

As whole exome sequencing (WES) becomes more widely used in the clinical realm, a wealth of unanalyzed information will be routinely generated. Using WES read depth data to predict copy number variation (CNV) could extend the diagnostic utility of this previously underutilized data by providing clinically important information such as previously unsuspected deletions or duplications. We evaluated ExomeDepth, a free R package, in addition to an aneuploidy prediction method, to detect CNVs in WES data. First, in a blinded pilot study, five out of five genomic alterations were correctly identified from clinical samples with previously defined chromosomal gains or losses, including submicroscopic deletions, duplications, and chromosomal trisomy. We then examined CNV calls among 53 patients participating in the NCGENES research study and undergoing WES, who had existing clinical chromosomal microarray (CMA) data that could be used for validation. For unique CNVs that overlap well with WES coverage regions, sensitivity was 89% for deletions and 65% for duplications. While specificity of the algorithm calls remains a concern, this is less of an issue at high threshold filtering levels. When applied to all 672 patients from the exome sequencing study, ExomeDepth identified eleven diagnostically relevant CNVs ranging in size from a two exon deletion to whole chromosome duplications, as well as numerous other CNVs with varying clinical significance. This opportunistic analysis of WES data yields an additional 1.6% of patients in this study with pathogenic or likely pathogenic CNVs that are clinically relevant to their phenotype as well as clinically relevant secondary findings. Finally, we demonstrate the potential value of copy number analysis in cases where a single heterozygous likely or known pathogenic single nucleotide alteration is identified in a gene associated with an autosomal recessive condition.


Subject(s)
DNA Copy Number Variations , Diagnosis , Exome Sequencing , Adolescent , Adult , Child , Child, Preschool , Computational Biology , Female , Humans , Male , Middle Aged
SELECTION OF CITATIONS
SEARCH DETAIL
...