Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Mater ; 36(6): 2810-2818, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38558918

ABSTRACT

Material design is increasingly used to realize desired functional properties, and the perovskite structure family is one of the richest and most diverse: perovskites are employed in many applications due to their structural flexibility and compositional diversity. Hexagonal, layered perovskite structures with chains of face-sharing transition metal oxide octahedra have attracted great interest as quantum materials due to their magnetic and electronic properties. Ba4MMn3O12, a member of the "12R" class of hexagonal, layered perovskites, contains trimers of face-sharing MnO6 octahedra that are linked by a corner-sharing, bridging MO6 octahedron. Here, we investigate cluster magnetism in the Mn3O12 trimers and the role of this bridging octahedron on the magnetic properties of two isostructural 12R materials by systematically changing the M4+ cation from nonmagnetic Ce4+ (f0) to magnetic Pr4+ (f1). We synthesized 12R-Ba4MMn3O12 (M= Ce, Pr) with high phase purity and characterized their low-temperature crystal structures and magnetic properties. Using substantially higher purity samples than previously reported, we confirm the frustrated antiferromagnetic ground state of 12R-Ba4PrMn3O12 below TN ≈ 7.75 K and explore the cluster magnetism of its Mn3O12 trimers. Despite being atomically isostructural with 12R-Ba4CeMn3O12, the f1 electron associated with Pr4+ causes much more complex magnetic properties in 12R-Ba4PrMn3O12. In 12R-Ba4PrMn3O12, we observe a sharp, likely antiferromagnetic transition at T2 ≈ 12.15 K and an additional transition at T1 ≈ 200 K, likely in canted antiferromagnetic order. These results suggest that careful variation of composition within the family of hexagonal, layered perovskites can be used to tune material properties using the complex role of the Pr4+ ion in magnetism.

2.
J Appl Crystallogr ; 56(Pt 5): 1480-1484, 2023 Oct 01.
Article in English | MEDLINE | ID: mdl-37791352

ABSTRACT

The general-purpose powder diffractometer beamline (BL2-1) at the Stanford Synchrotron Radiation Lightsource (SSRL) is described. The evolution of design and performance of BL2-1 are presented, in addition to current operating specifications, applications and measurement capabilities. Recent developments involve a robotic sample changer enabling high-throughput X-ray diffraction measurements, applicable to mail-in and remote operations. In situ and operando capabilities to measure samples with different form factors (e.g. capillary, flat plate or thin film, and transmission) and under variable experimental conditions are discussed. Several example datasets and accompanying Rietveld refinements are presented.

3.
Acta Crystallogr E Crystallogr Commun ; 79(Pt 5): 469-473, 2023 Apr 01.
Article in English | MEDLINE | ID: mdl-37151825

ABSTRACT

The resurgence of inter-est in hydrogen-related technologies has stimulated new studies aimed at advancing lesser-developed water-splitting processes, such as solar thermochemical hydrogen production (STCH). Progress in STCH has been largely hindered by a lack of new materials able to efficiently split water at a rate comparable to ceria under identical experimental conditions. BaCe0.25Mn0.75O3 (BCM) recently demonstrated enhanced hydrogen production over ceria and has the potential to further our understanding of two-step thermochemical cycles. A significant feature of the 12R hexa-gonal perovskite structure of BCM is the tendency to, in part, form a 6H polytype at high temperatures and reducing environments (i.e., during the first step of the thermochemical cycle), which may serve to mitigate degradation of the complex oxide. An analogous compound, namely BaNb0.25Mn0.75O3 (BNM) with a 12R structure was synthesized and displays nearly complete conversion to the 6H structure under identical reaction conditions as BCM. The structure of the BNM-6H polytype was determined from Rietveld refinement of synchrotron powder X-ray diffraction data and is presented within the context of the previously established BCM-6H structure.

4.
Phys Chem Chem Phys ; 25(1): 590-603, 2022 Dec 21.
Article in English | MEDLINE | ID: mdl-36484338

ABSTRACT

Understanding the role that the surface of a material plays in the mediation of a chemical reaction at the atomic level is paramount to the optimization and improvement of catalytic materials. While this area of research has matured over several decades, few techniques are sensitive enough to directly examine and differentiate the behavior of molecular adsorbates during the course of the chemical reaction with a substrate. In this study, a combined approach which involves structural characterization techniques, volumetric adsorption, temperature programmed desorption, and inelastic neutron scattering (INS) was used to investigate the mechanism of ethanol dehydration on the surface of transition phase aluminas. The alumina samples employed were extensively characterized using X-ray diffraction, solid-state 27Al nuclear magnetic resonance spectroscopy, and thermogravimetric analysis with differential scanning calorimetry. A high-precision volumetric adsorption apparatus was used to characterize the surface area and to controllably dose ethanol onto the surface of the aluminas. A modified temperature programmed desorption (TPD) method which samples the molecular composition of the vapor at discrete temperatures in a closed cell is described. INS results were used to confirm adsorption of ethanol on γ- and θ-alumina and show the reaction of ethanol and subsequent formation of ethylene as a function of temperature. The TPD and INS results affirm that the dehydration reaction and subsequent formation of ethylene on both γ- and θ-aluminas occur rapidly at 300 °C, though ethanol is still observed on θ-alumina indicating fewer active sites. These results demonstrate the value of a multi-faceted characterization approach, featuring INS, towards providing a detailed understanding of the ethanol dehydration mechanism on θ-alumina and further provide the basis for extending this approach to other systems in heterogeneous catalysis and areas where molecule-substrate interactions are poorly understood.

5.
J Phys Chem A ; 126(41): 7491-7501, 2022 Oct 20.
Article in English | MEDLINE | ID: mdl-36201680

ABSTRACT

Recent interest in emerging processes for polymer manufacturing and bio-based chemistries for direct chemical recycling/upcycling has motivated new research focused on a deeper understanding of atomic-scale polymer properties and how they influence macroscopic phenomena. Uncovering the fundamental properties of polymers that give rise to macroscopic behavior could enable new pathways for improved recyclability or utilization of alternative "greener" polymer analogues. In this study, the neutron vibrational spectrum was measured for a film of biaxially oriented polyethylene terephthalate (BoPET) using inelastic neutron scattering (INS), to investigate the relationship between the structure and dynamics of a widely used polymer. Compared to conventional spectroscopic techniques, the use of INS is advantageous for polymeric materials due to the absence of selection rules (i.e., all transitions are allowed), broad-band energy range, and considerable sensitivity to hydrogen modes. In order to distinguish the vibrational modes caused by trans and gauche rotational isomerism, the normal modes of vibration were calculated from a density functional theory-optimized structure of crystalline PET (cPET), representative of the all-trans state, and compared with INS from "highly crystalline" PET powder. Although in- and out-of-plane wagging of hydrogens on the ring structure exhibit significant contribution to both BoPET and cPET spectra, the wagging, rocking, and twisting modes of hydrogen on the ethylene glycol group are, in most cases, conformation-specific. These results were further rationalized by investigating the role of hyperconjugation in stabilizing both conformations using the natural bond order method. Through comparison of experimental and calculated INS results, this work provides the fundamental basis for discovering the role of structure and dynamics in shaping the macroscopic properties of PET and polymer analogues.

6.
Inorg Chem ; 61(16): 6128-6137, 2022 Apr 25.
Article in English | MEDLINE | ID: mdl-35404603

ABSTRACT

The resurgence of interest in a hydrogen economy and the development of hydrogen-related technologies has initiated numerous research and development efforts aimed at making the generation, storage, and transportation of hydrogen more efficient and affordable. Solar thermochemical hydrogen production (STCH) is a process that potentially exhibits numerous benefits such as high reaction efficiencies, tunable thermodynamics, and continued performance over extended cycling. Although CeO2 has been the de facto standard STCH material for many years, more recently 12R-Ba4CeMn3O12 (BCM) has demonstrated enhanced hydrogen production at intermediate H2/H2O conditions compared to CeO2, making it a contender for large-scale hydrogen production. However, the thermo-reduction stability of 12R-BCM dictates the oxygen partial pressure (pO2) and temperature conditions optimal for cycling. In this study, we identify the formation of a 6H-BCM polytype at high temperature and reducing conditions, experimentally and computationally, as a mechanism and pathway for 12R-BCM decomposition. 12R-BCM was synthesized with high purity and then controllably reduced using thermogravimetric analysis (TGA). Synchrotron X-ray diffraction (XRD) data is used to identify the formation of a 6H-Ba3Ce0.75Mn2.25O9 (6H-BCM) polytype that is formed at 1350 °C under strongly reducing pO2. Density functional theory (DFT) total energy and defect calculations show a window of thermodynamic stability for the 6H-polytype consistent with the XRD results. These data provide the first evidence of the 6H-BCM polytype and could provide a mechanistic explanation for the superior water-splitting behaviors of 12R-BCM.

7.
ACS Nano ; 15(6): 10163-10174, 2021 Jun 22.
Article in English | MEDLINE | ID: mdl-34029480

ABSTRACT

A general problem when designing functional nanomaterials for energy storage is the lack of control over the stability and reactivity of metastable phases. Using the high-capacity hydrogen storage candidate LiAlH4 as an exemplar, we demonstrate an alternative approach to the thermodynamic stabilization of metastable metal hydrides by coordination to nitrogen binding sites within the nanopores of N-doped CMK-3 carbon (NCMK-3). The resulting LiAlH4@NCMK-3 material releases H2 at temperatures as low as 126 °C with full decomposition below 240 °C, bypassing the usual Li3AlH6 intermediate observed in bulk. Moreover, >80% of LiAlH4 can be regenerated under 100 MPa H2, a feat previously thought to be impossible. Nitrogen sites are critical to these improvements, as no reversibility is observed with undoped CMK-3. Density functional theory predicts a drastically reduced Al-H bond dissociation energy and supports the observed change in the reaction pathway. The calculations also provide a rationale for the solid-state reversibility, which derives from the combined effects of nanoconfinement, Li adatom formation, and charge redistribution between the metal hydride and the host.

8.
ACS Appl Energy Mater ; 4(4): 3737-3747, 2021 Apr 26.
Article in English | MEDLINE | ID: mdl-37153859

ABSTRACT

In the search for energy storage materials, metal octahydrotriborates, M(B3H8) n , n = 1 and 2, are promising candidates for applications such as stationary hydrogen storage and all-solid-state batteries. Therefore, we studied the thermal conversion of unsolvated Mg(B3H8)2 to BH4 - as-synthesized and in the presence of MgH2. The conversion of our unsolvated Mg(B3H8)2 starts at ∼100 °C and yields ∼22 wt % of BH4 - along with the formation of (closo-hydro)borates and volatile boranes. This loss of boron (B) is a sign of poor cyclability of the system. However, the addition of activated MgH2 to unsolvated Mg(B3H8)2 drastically increases the thermal conversion to 85-88 wt % of BH4 - while simultaneously decreasing the amounts of B-losses. Our results strongly indicate that the presence of activated MgH2 substantially decreases the formation of (closo-hydro)borates and provides the necessary H2 for the B3H8-to-BH4 conversion. This is the first report of a metal octahydrotriborate system to selectively convert to BH4 - under moderate conditions of temperature (200 °C) in less than 1 h, making the MgB3H8-MgH2 system very promising for energy storage applications.

9.
Anal Bioanal Chem ; 406(30): 7817-25, 2014 Dec.
Article in English | MEDLINE | ID: mdl-25424725

ABSTRACT

Genuine explosive materials are traditionally employed in the training and testing of explosive-detecting canines so that they will respond reliably to these substances. However, challenges arising from the acquisition, storage, handling, and transportation of explosives have given rise to the development of "pseudo-explosive" training aids. These products attempt to emulate the odor of real explosives while remaining inert. Therefore, a canine trained on a pseudo-explosive should respond to its real-life analog. Similarly, a canine trained on an actual explosive should respond to the pseudo-explosive as if it was real. This research tested those assumptions with a focus on three explosives: single-base smokeless powder, 2,4,6-trinitrotoluene (TNT), and a RDX-based plastic explosive (Composition C-4). Using gas chromatography-mass spectrometry with solid phase microextraction as a pre-concentration technique, we determined that the volatile compounds given off by pseudo-explosive products consisted of various solvents, known additives from explosive formulations, and common impurities present in authentic explosives. For example, simulated smokeless powders emitted terpenes, 2,4-dinitrotoluene, diphenylamine, and ethyl centralite. Simulated TNT products emitted 2,4- and 2,6-dinitrotoluene. Simulated C-4 products emitted cyclohexanone, 2-ethyl-1-hexanol, and dimethyldinitrobutane. We also conducted tests to determine whether canines trained on pseudo-explosives are capable of alerting to genuine explosives and vice versa. The results show that canines trained on pseudo-explosives performed poorly at detecting all but the pseudo-explosives they are trained on. Similarly, canines trained on actual explosives performed poorly at detecting all but the actual explosives on which they were trained.


Subject(s)
Dogs/physiology , Explosive Agents/analysis , Odorants/analysis , Triazines/analysis , Trinitrotoluene/analysis , Animals , Dinitrobenzenes/analysis , Gas Chromatography-Mass Spectrometry , Hexanols/analysis , Smell , Solid Phase Microextraction
SELECTION OF CITATIONS
SEARCH DETAIL
...