Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 124
Filter
1.
Cell ; 187(11): 2628-2632, 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788686

ABSTRACT

Glycans, with their variable compositions and highly dynamic conformations, vastly expand the heterogeneity of whatever factor or cell they are attached to. These properties make them crucial contributors to biological function and organismal health and also very difficult to study. That may be changing as we look to the future of glycobiology.


Subject(s)
Glycomics , Polysaccharides , Polysaccharides/metabolism , Polysaccharides/chemistry , Humans , Animals
2.
Biotechnol Rep (Amst) ; 42: e00841, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38707206

ABSTRACT

Cobra (Naja kaouthia) venom contains many toxins including α-neurotoxin (αNTX) and phospholipase A2 (PLA2), which can cause neurodegeneration, respiratory failure, and even death. The traditional antivenom derived from animal serum faces many challenges and limitations. Heavy-chain-only antibodies (HCAb), fusing VHH with human IgG Fc region, offer advantages in tissue penetration, antigen binding, and extended half-life. This research involved the construction and transient expression of two types of VHH-FC which are specific to α-Neurotoxin (VHH-αNTX-FC) and Phospholipase A2 (VHH-PLA2-FC) in Nicotiana benthamiana leaves. The recombinant HCAbs were incubated for up to six days to optimize expression levels followed by purification by affinity chromatography and characterization using LC/Q-TOF mass spectrometry (MS). Purified proteins demonstrated over 92 % sequence coverage and an average mass of around 82 kDa with a high-mannose N-glycan profile. An antigen binding assay showed that the VHH-αNTX-Fc has a greater ability to bind to crude venom than VHH-PLA2-Fc.

3.
Sci Rep ; 14(1): 9629, 2024 04 26.
Article in English | MEDLINE | ID: mdl-38671013

ABSTRACT

Coronavirus disease of 2019 (COVID-19), caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), is an ongoing outbreak, disrupting human life worldwide. Vaccine development was prioritized to obtain a biological substance for combating the viral pathogen and lessening disease severity. In vaccine production, biological origin and relevant materials must be carefully examined for potential contaminants in conformity with good manufacturing practice. Due to fast mutation, several SARS-CoV-2 variants and sublineages have been identified. Currently, most of COVID-19 vaccines are developed based on the protein sequence of the Wuhan wild type strain. New vaccines specific for emerging SARS-CoV-2 strains are continuously needed to tackle the incessant evolution of the virus. Therefore, in vaccine development and production, a reliable method to identify the nature of subunit vaccines is required to avoid cross-contamination. In this study, liquid chromatography-mass spectrometry using quadrupole-time of flight along with tryptic digestion was developed for distinguishing protein materials derived from different SARS-CoV-2 strains. After analyzing the recombinantly produced receptor-binding domain (RBD) of the SARS-CoV-2 spike protein, nine characteristic peptides were identified with acceptable limits of detection. They can be used together to distinguish 14 SARS-CoV-2 strains, except Kappa and Epsilon. Plant-produced RBD-Fc protein derived from Omicron strains can be easily distinguished from the others with 4-5 unique peptides. Eventually, a peptide key was developed based on the nine peptides, offering a prompt and precise flowchart to facilitate SARS-CoV-2 strain identification in COVID-19 vaccine manufacturing.


Subject(s)
COVID-19 Vaccines , COVID-19 , Quality Control , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , SARS-CoV-2/immunology , SARS-CoV-2/genetics , SARS-CoV-2/isolation & purification , COVID-19 Vaccines/immunology , Humans , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/immunology , Spike Glycoprotein, Coronavirus/metabolism , COVID-19/prevention & control , COVID-19/virology , Chromatography, Liquid , Drug Contamination/prevention & control , Mass Spectrometry/methods , Vaccines, Subunit/immunology , Liquid Chromatography-Mass Spectrometry
4.
J Microsc ; 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38687244

ABSTRACT

Plant cells are a capable system for producing economically and therapeutically important proteins for a variety of applications, and are considered a safer production system than some existing hosts such as bacteria or yeasts. However, plants do not perform protein modifications in the same manner as mammalian cells do. This can impact on protein functionality for plant-produced human therapeutics. This obstacle can be overcome by creating a plant-based system capable of 'humanising' proteins of interest resulting in a glycosylation profile of synthetic plant-produced proteins as it would occur in mammalian systems. For this, the human glycosylation enzymes (HuGEs) involved in N-linked glycosylation N-acetylglucosaminyltransferase IV and V (GNTIV and GNTV), ß-1,4-galactosyltransferase (B4GALT1), and α-2,6-sialyltransferase (ST6GAL) were expressed in plant cells. For these enzymes to carry out the stepwise glycosylation functions, they need to localise to late Golgi body cisternae. This was achieved by a protein targeting strategy of replacing the mammalian Golgi targeting domains (Cytoplasmic-Transmembrane-Stem (CTS) regions) with plant-specific ones. Using high-resolution and dynamic confocal microscopy, we show that GNTIV and GNTV were successfully targeted to the medial-Golgi cisternae while ST6GAL and B4GALT1 were targeted to trans-Golgi cisternae. Plant cells are a promising system to produce human therapeutics for example proteins used in enzyme replacement therapies. Plants can provide safer and cheaper alternatives to existing expression systems such as mammalian cell culture, bacteria or yeast. An important factor for the functionality of therapeutic proteins though are protein modifications specific to human cells. However, plants do not perform protein modifications in the same manner as human cells do. Therefore, plant cells need to be genetically modified to mimic human protein modifications patterns. The modification of importance here, is called N-linked glycosylation and adds specific sugar molecules onto the proteins. Here we show the expression of four human glycosylation enzymes, which are required for N-linked glycosylation, in plant cells. In addition, as these protein modifications are carried out in cells resembling a factory production line, it is important that the human glycosylation enzymes be placed in the correct cellular compartments and in the correct order. This is carried out in Golgi bodies. Golgi bodies are composed of several defined stacks termed cis-, medial and trans-Golgi body stacks. For correct protein function, two of these human glycosylation enzymes need to be placed in the medial-Golgi attacks and the other two in the trans-Golgi stacks. Using high-resolution laser microscopy in live plant cells, we show here that the human glycosylation enzymes are sent within the cells to the correct Golgi body stacks. These are first steps to modify plant cells in order to produce human therapeutics.

5.
Front Mol Biosci ; 11: 1390659, 2024.
Article in English | MEDLINE | ID: mdl-38645274

ABSTRACT

The transition of IgA antibodies into clinical development is crucial because they have the potential to create a new class of therapeutics with superior pathogen neutralization, cancer cell killing, and immunomodulation capacity compared to IgG. However, the biological role of IgA glycans in these processes needs to be better understood. This study provides a detailed biochemical, biophysical, and structural characterization of recombinant monomeric human IgA2, which varies in the amount/locations of attached glycans. Monomeric IgA2 antibodies were produced by removing the N-linked glycans in the CH1 and CH2 domains. The impact of glycans on oligomer formation, thermal stability, and receptor binding was evaluated. In addition, we performed a structural analysis of recombinant IgA2 in solution using Small Angle X-Ray Scattering (SAXS) to examine the effect of glycans on protein structure and flexibility. Our results indicate that the absence of glycans in the Fc tail region leads to higher-order aggregates. SAXS, combined with atomistic modeling, showed that the lack of glycans in the CH2 domain results in increased flexibility between the Fab and Fc domains and a different distribution of open and closed conformations in solution. When binding with the Fcα-receptor, the dissociation constant remains unaltered in the absence of glycans in the CH1 or CH2 domain, compared to the fully glycosylated protein. These results provide insights into N-glycans' function on IgA2, which could have important implications for developing more effective IgA-based therapeutics in the future.

6.
Hum Vaccin Immunother ; 20(1): 2327142, 2024 Dec 31.
Article in English | MEDLINE | ID: mdl-38508690

ABSTRACT

Respiratory syncytial virus (RSV) is a highly contagious virus that affects the lungs and respiratory passages of many vulnerable people. It is a leading cause of lower respiratory tract infections and clinical complications, particularly among infants and elderly. It can develop into serious complications such as pneumonia and bronchiolitis. The development of RSV vaccine or immunoprophylaxis remains highly active and a global health priority. Currently, GSK's Arexvy™ vaccine is approved for the prevention of lower respiratory tract disease in older adults (>60 years). Palivizumab and currently nirsevimab are the approved monoclonal antibodies (mAbs) for RSV prevention in high-risk patients. Many studies are ongoing to develop additional therapeutic antibodies for preventing RSV infections among newborns and other susceptible groups. Recently, additional antibodies have been discovered and shown greater potential for development as therapeutic alternatives to palivizumab and nirsevimab. Plant expression platforms have proven successful in producing recombinant proteins, including antibodies, offering a potential cost-effective alternative to mammalian expression platforms. Hence in this study, an attempt was made to use a plant expression platform to produce two anti-RSV fusion (F) mAbs 5C4 and CR9501. The heavy-chain and light-chain sequences of both these antibodies were transiently expressed in Nicotiana benthamiana plants using a geminiviral vector and then purified using single-step protein A affinity column chromatography. Both these plant-produced mAbs showed specific binding to the RSV fusion protein and demonstrate effective viral neutralization activity in vitro. These preliminary findings suggest that plant-produced anti-RSV mAbs are able to neutralize RSV in vitro.


Subject(s)
Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus Vaccines , Respiratory Syncytial Virus, Human , Infant , Animals , Humans , Infant, Newborn , Aged , Palivizumab/therapeutic use , Nicotiana/genetics , Respiratory Syncytial Virus Infections/prevention & control , Antibodies, Monoclonal/therapeutic use , Antibodies, Viral , Antibodies, Neutralizing , Viral Fusion Proteins/genetics , Mammals/metabolism
7.
Front Bioeng Biotechnol ; 12: 1329018, 2024.
Article in English | MEDLINE | ID: mdl-38511130

ABSTRACT

Introduction: Prolyl-4-hydroxylases (P4H) catalyse the irreversible conversion of proline to hydroxyproline, constituting a common posttranslational modification of proteins found in humans, plants, and microbes. Hydroxyproline residues can be further modified in plants to yield glycoproteins containing characteristic O-glycans. It is currently unknown how these plant endogenous modifications impact protein functionality and they cause considerable concerns for the recombinant production of therapeutic proteins in plants. In this study, we carried out host engineering to generate a therapeutic glycoprotein largely devoid of plant-endogenous O-glycans for functional characterization. Methods: Genome editing was used to inactivate two genes coding for enzymes of the P4H10 subfamily in the widely used expression host Nicotiana benthamiana. Using glycoengineering in plants and expression in human HEK293 cells we generated four variants of a potent, SARS-CoV-2 neutralizing antibody, COVA2-15 IgA1. The variants that differed in the number of modified proline residues and O-glycan compositions of their hinge region were assessed regarding their physicochemical properties and functionality. Results: We found that plant endogenous O-glycan formation was strongly reduced on IgA1 when transiently expressed in the P4H10 double mutant N. benthamiana plant line. The IgA1 glycoforms displayed differences in proteolytic stability and minor differences in receptor binding thus highlighting the importance of O-glycosylation in the hinge region of human IgA1. Discussion: This work reports the successful protein O-glycan engineering of an important plant host for recombinant protein expression. While the complete removal of endogenous hydroxyproline residues from the hinge region of plant-produced IgA1 is yet to be achieved, our engineered line is suitable for structure-function studies of O-glycosylated recombinant glycoproteins produced in plants.

8.
Methods Mol Biol ; 2772: 221-238, 2024.
Article in English | MEDLINE | ID: mdl-38411817

ABSTRACT

Protein N-glycosylation is an essential posttranslational modification which is initiated in the endoplasmic reticulum (ER). In plants, the N-glycans play a pivotal role in protein folding and quality control. Through the interaction of glycan processing and binding reactions mediated by ER-resident glycosidases and specific carbohydrate-binding proteins, the N-glycans contribute to the adoption of a native protein conformation. Properly folded glycoproteins are released from these processes and allowed to continue their transit to the Golgi where further processing and maturation of N-glycans leads to the formation of more complex structures with different functions. Incompletely folded glycoproteins are removed from the ER by a highly conserved degradation process to prevent the accumulation or secretion of misfolded proteins and maintain ER homeostasis. Here, we describe methods to analyze the N-glycosylation status and the glycan-dependent ER-associated degradation process in plants.


Subject(s)
Endoplasmic Reticulum , Protein Processing, Post-Translational , Glycosylation , Glycoproteins , Polysaccharides
9.
Mol Ther ; 32(3): 689-703, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38268188

ABSTRACT

Passive delivery of antibodies to mucosal sites may be a valuable adjunct to COVID-19 vaccination to prevent infection, treat viral carriage, or block transmission. Neutralizing monoclonal IgG antibodies are already approved for systemic delivery, and several clinical trials have been reported for delivery to mucosal sites where SARS-CoV-2 resides and replicates in early infection. However, secretory IgA may be preferred because the polymeric complex is adapted for the harsh, unstable external mucosal environment. Here, we investigated the feasibility of producing neutralizing monoclonal IgA antibodies against SARS-CoV-2. We engineered two class-switched mAbs that express well as monomeric and secretory IgA (SIgA) variants with high antigen-binding affinities and increased stability in mucosal secretions compared to their IgG counterparts. SIgAs had stronger virus neutralization activities than IgG mAbs and were protective against SARS-CoV-2 infection in an in vivo murine model. Furthermore, SIgA1 can be aerosolized for topical delivery using a mesh nebulizer. Our findings provide a persuasive case for developing recombinant SIgAs for mucosal application as a new tool in the fight against COVID-19.


Subject(s)
Antibodies, Neutralizing , COVID-19 , Animals , Mice , Humans , Immunoglobulin A, Secretory , SARS-CoV-2/genetics , COVID-19 Vaccines , COVID-19/prevention & control , Antibodies, Monoclonal , Immunoglobulin G , Antibodies, Viral
10.
Biotechnol J ; 19(1): e2300323, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37804142

ABSTRACT

Control over glycosylation is an important quality parameter in recombinant protein production. Here, we demonstrate the generation of a marker-free genome edited Nicotiana benthamiana N-glycosylation mutant (NbXF-KO) carrying inactivated ß1,2-xylosyltransferase and α1,3-fucosyltransferase genes. The knockout of seven genes and their stable inheritance was confirmed by DNA sequencing. Mass spectrometric analyses showed the synthesis of N-glycans devoid of plant-specific ß1,2-xylose and core α 1,3-fucose on endogenous proteins and a series of recombinantly expressed glycoproteins with different complexities. Further transient glycan engineering towards more diverse human-type N-glycans resulted in the production of recombinant proteins decorated with ß1,4-galactosylated and α2,6-sialylated structures, respectively. Notably, a monoclonal antibody expressed in the NbXF-KO displayed glycosylation-dependent activities. Collectively, the engineered plants grow normally and are well suited for upscaling, thereby meeting industrial and regulatory requirements for the production of high-quality therapeutic proteins.


Subject(s)
Glycoproteins , UDP Xylose-Protein Xylosyltransferase , Humans , Glycosylation , Recombinant Proteins/metabolism , Glycoproteins/genetics , Polysaccharides/chemistry , Plants, Genetically Modified/genetics , Plants, Genetically Modified/metabolism
11.
Front Plant Sci ; 14: 1320051, 2023.
Article in English | MEDLINE | ID: mdl-38089803

ABSTRACT

Introduction: The Golgi apparatus of plants is the central cellular organelle for glycan processing and polysaccharide biosynthesis. These essential processes are catalyzed by a large number of Golgi-resident glycosyltransferases and glycosidases whose organization within the Golgi is still poorly understood. Methods: Here, we examined the role of the stem region of the cis/medial Golgi enzyme N-acetylglucosaminyltransferase I (GNTI) in homomeric complex formation in the Golgi of Nicotiana benthamiana using biochemical approaches and confocal microscopy. Results: Transient expression of the N-terminal cytoplasmic, transmembrane, and stem (CTS) regions of GNTI leads to a block in N-glycan processing on a co-expressed recombinant glycoprotein. Overexpression of the CTS region from Golgi α-mannosidase I, which can form in planta complexes with GNTI, results in a similar block in N-glycan processing, while GNTI with altered subcellular localization or N-glycan processing enzymes located further downstream in the Golgi did not affect complex N-glycan processing. The GNTI-CTS-dependent alteration in N-glycan processing is caused by a specific nine-amino acid sequence motif in the stem that is required for efficient GNTI-GNTI interaction. Discussion: Taken together, we have identified a conserved motif in the stem region of the key N-glycan processing enzyme GNTI. We propose that the identified sequence motif in the GNTI stem region acts as a dominant negative motif that can be used in transient glycoengineering approaches to produce recombinant glycoproteins with predominantly mannosidic N-glycans.

12.
Front Bioeng Biotechnol ; 11: 1320586, 2023.
Article in English | MEDLINE | ID: mdl-38125307

ABSTRACT

Plants are being increasingly recognized for the production of complex human proteins, including monoclonal antibodies (mAbs). Various methods have been applied to boost recombinant expression, with DNA codon usage being an important approach. Here, we transiently expressed three complex human mAbs in Nicotiana benthamiana, namely one IgG3 and two IgM directed against SARS-CoV-2 as codon optimized(CO) and non-codon optimized (NCO) variants. qRT-PCR exhibited significantly increased mRNA levels of all CO variants compared to the non-codon optimized orthologues, in line with increased protein expression. Purified CO and NCO mAbs did not exhibit obvious biochemical differences, as determined by SDS-PAGE and antigen binding activities. By contrast, enhanced production selectively impacts on glycosite occupancy and N-glycan processing, with increased mannosidic structures. The results point to a careful monitoring of recombinant proteins upon enhancing expression. Especially if it comes to therapeutic application even subtle modifications might alter product efficacy or increase immunogenicity.

13.
Front Plant Sci ; 14: 1275228, 2023.
Article in English | MEDLINE | ID: mdl-37868317

ABSTRACT

Subunit vaccines based on recombinant viral antigens are valuable interventions to fight existing and evolving viruses and can be produced at large-scale in plant-based expression systems. The recombinant viral antigens are often derived from glycosylated envelope proteins of the virus and glycosylation plays an important role for the immunogenicity by shielding protein epitopes. The receptor-binding domain (RBD) of the SARS-CoV-2 spike is a principal target for vaccine development and has been produced in plants, but the yields of recombinant RBD variants were low and the role of the N-glycosylation in RBD from different SARS-CoV-2 variants of concern is less studied. Here, we investigated the expression and glycosylation of six different RBD variants transiently expressed in leaves of Nicotiana benthamiana. All of the purified RBD variants were functional in terms of receptor binding and displayed almost full N-glycan occupancy at both glycosylation sites with predominately complex N-glycans. Despite the high structural sequence conservation of the RBD variants, we detected a variation in yield which can be attributed to lower expression and differences in unintentional proteolytic processing of the C-terminal polyhistidine tag used for purification. Glycoengineering towards a human-type complex N-glycan profile with core α1,6-fucose, showed that the reactivity of the neutralizing antibody S309 differs depending on the N-glycan profile and the RBD variant.

14.
Front Plant Sci ; 14: 1149455, 2023.
Article in English | MEDLINE | ID: mdl-37711295

ABSTRACT

Cytotoxic T lymphocyte-associated protein 4 (CTLA-4) is an immune checkpoint regulator exclusively expressed on T cells that obstructs the cell's effector functions. Ipilimumab (Yervoy®), a CTLA-4 blocking antibody, emerged as a notable breakthrough in modern cancer treatment, showing upfront clinical benefits in multiple carcinomas. However, the exhilarating cost of checkpoint blockade therapy is discouraging and even utmost prominent in developing countries. Thereby, affordability of cancer care has become a point of emphasis in drug development pipelines. Plant expression system blossomed as a cutting-edge platform for rapid, facile to scale-up, and economical production of recombinant therapeutics. Here, we describe the production of an anti-CTLA-4 2C8 antibody in Nicotiana benthamiana. ELISA and bio-layer interferometry were used to analyze antigen binding and binding kinetics. Anticancer responses in vivo were evaluated using knocked-in mice implanted with syngeneic colon tumor. At 4 days post-infiltration, the antibody was transiently expressed in plants with yields of up to 39.65 ± 8.42 µg/g fresh weight. Plant-produced 2C8 binds to both human and murine CTLA-4, and the plant-produced IgG1 also binds to human FcγRIIIa (V158). In addition, the plant-produced 2C8 monoclonal antibody is as effective as Yervoy® in inhibiting tumor growth in vivo. In conclusion, our study underlines the applicability of plant platform to produce functional therapeutic antibodies with promising potential in cancer immunotherapy.

15.
Front Plant Sci ; 14: 1233666, 2023.
Article in English | MEDLINE | ID: mdl-37615026

ABSTRACT

N-Glycosylation of immunoglobulin G1 (IgG1) at the heavy chain Fc domain (Asn297) plays an important role for antibody structure and effector functions. While numerous recombinant IgG1 antibodies have been successfully expressed in plants, they frequently display a considerable amount (up to 50%) of unglycosylated Fc domain. To overcome this limitation, we tested a single-subunit oligosaccharyltransferase from the protozoan Leishmania donovani (LdOST) for its ability to improve IgG1 Fc glycosylation. LdOST fused to a fluorescent protein was transiently expressed in Nicotiana benthamiana and confocal microscopy confirmed the subcellular location at the endoplasmic reticulum. Transient co-expression of LdOST with two different IgG1 antibodies resulted in a significant increase (up to 97%) of Fc glycosylation while leaving the overall N-glycan composition unmodified, as determined by different mass spectrometry approaches. While biochemical and functional features of "glycosylation improved" antibodies remained unchanged, a slight increase in FcγRIIIa binding and thermal stability was observed. Collectively, our results reveal that LdOST expression is suitable to reduce the heterogeneity of plant-produced antibodies and can contribute to improving their stability and effector functions.

18.
Sci Rep ; 13(1): 14146, 2023 08 29.
Article in English | MEDLINE | ID: mdl-37644118

ABSTRACT

Immune checkpoint inhibitors are a well-known class of immunotherapeutic drugs that have been used for effective treatment of several cancers. Atezolizumab (Tecentriq) was the first antibody to target immune checkpoint PD-L1 and is now among the most commonly used anticancer therapies. However, this anti-PD-L1 antibody is produced in mammalian cells with high manufacturing costs, limiting cancer patients' access to the antibody treatment. Plant expression system is another platform that can be utilized, as they can synthesize complex glycoproteins, are rapidly scalable, and relatively cost-efficient. Herein, Atezolizumab was transiently produced in Nicotiana benthamiana and demonstrated high expression level within 4-6 days post-infiltration. After purification by affinity chromatography, the purified plant-produced Atezolizumab was compared to Tecentriq and showed the absence of glycosylation. Furthermore, the plant-produced Atezolizumab could bind to PD-L1 with comparable affinity to Tecentriq in ELISA. The tumor growth inhibitory activity of plant-produced Atezolizumab in mice was also found to be similar to that of Tecentriq. These findings confirm the plant's capability to serve as an efficient production platform for immunotherapeutic antibodies and suggest that it could be used to alleviate the cost of existing anticancer products.


Subject(s)
Antibodies, Monoclonal, Humanized , Nicotiana , Animals , Mice , Antibodies, Monoclonal, Humanized/pharmacology , Enzyme-Linked Immunosorbent Assay , Immunotherapy , Mammals
19.
Sci Rep ; 13(1): 11927, 2023 07 24.
Article in English | MEDLINE | ID: mdl-37488213

ABSTRACT

As a response to invasion by pathogens, the secretion of interleukin 6 (IL-6) which is a cytokine, activates IL-6/JAKs/STAT3 intracellular signaling via., phosphorylation. Over expression of pSTAT3 induces IL-6 positive feedback loop causing cytokine release syndrome or cytokine storm. Plants have gained momentum as an alternative expression system. Hence, this study aims to produce mAb targeting human IL-6 receptor (hIL-6R) in Nicotiana benthamiana for down regulating its cellular signaling thus, decreasing the expression of pSTAT3. The variable regions of heavy and light chains of anti-hIL-6R mAb were constructed in pBYK2e geminiviral plant expression vector and transiently co-expressed in N. benthamiana. The results demonstrate the proper protein assembly of anti-hIL-6R mAb with highest expression level of 2.24 mg/g FW at 5 dpi, with a yield of 21.4 µg/g FW after purification. The purity and N-glycosylation of plant produced antibody was analyzed, including its specificity to human IL-6 receptor by ELISA. Additionally, we investigated the effect to pSTAT3 expression in human PBMC's by flow cytometry wherein, the results confirmed lower expression of pSTAT3 with increasing concentrations of plant produced anti-hIL-6R mAb. Although, further in vivo studies are key to unveil the absolute functionality of anti-hIL-6R, we hereby show the potential of the plant platform and its suitability for the production of this therapeutic antibody.


Subject(s)
Interleukin-6 , Leukocytes, Mononuclear , Humans , Antibodies , Nicotiana , Cytokines , Cytokine Release Syndrome
20.
Biotechnol Adv ; 67: 108197, 2023 10.
Article in English | MEDLINE | ID: mdl-37315875

ABSTRACT

Protein glycosylation has a huge impact on biological processes in all domains of life. The type of glycan present on a recombinant glycoprotein depends on protein intrinsic features and the glycosylation repertoire of the cell type used for expression. Glycoengineering approaches are used to eliminate unwanted glycan modifications and to facilitate the coordinated expression of glycosylation enzymes or whole metabolic pathways to furnish glycans with distinct modifications. The formation of tailored glycans enables structure-function studies and optimization of therapeutic proteins used in different applications. While recombinant proteins or proteins from natural sources can be in vitro glycoengineered using glycosyltransferases or chemoenzymatic synthesis, many approaches use genetic engineering involving the elimination of endogenous genes and introduction of heterologous genes to cell-based production systems. Plant glycoengineering enables the in planta production of recombinant glycoproteins with human or animal-type glycans that resemble natural glycosylation or contain novel glycan structures. This review summarizes key achievements in glycoengineering of plants and highlights current developments aiming to make plants more suitable for the production of a diverse range of recombinant glycoproteins for innovative therapies.


Subject(s)
Plants , Vaccines , Animals , Humans , Glycosylation , Plants/genetics , Plants/metabolism , Recombinant Proteins/metabolism , Vaccines/genetics , Polysaccharides/chemistry , Glycoproteins/genetics , Glycoproteins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...