Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
Add more filters










Publication year range
1.
Curr Protoc ; 4(1): e969, 2024 Jan.
Article in English | MEDLINE | ID: mdl-38265166

ABSTRACT

PhyloFisher is a software package written primarily in Python3 that can be used for the creation, analysis, and visualization of phylogenomic datasets that consist of protein sequences from eukaryotic organisms. Unlike many existing phylogenomic pipelines, PhyloFisher comes with a manually curated database of 240 protein-coding genes, a subset of a previous phylogenetic dataset sampled from 304 eukaryotic taxa. The software package can also utilize a user-created database of eukaryotic proteins, which may be more appropriate for shallow evolutionary questions. PhyloFisher is also equipped with a set of utilities to aid in running routine analyses, such as the prediction of alternative genetic codes, removal of genes and/or taxa based on occupancy/completeness of the dataset, testing for amino acid compositional heterogeneity among sequences, removal of heterotachious and/or fast-evolving sites, removal of fast-evolving taxa, supermatrix creation from randomly resampled genes, and supermatrix creation from nucleotide sequences. © 2024 Wiley Periodicals LLC. Basic Protocol 1: Constructing a phylogenomic dataset Basic Protocol 2: Performing phylogenomic analyses Support Protocol 1: Installing PhyloFisher Support Protocol 2: Creating a custom phylogenomic database.


Subject(s)
Amino Acids , Biological Evolution , Phylogeny , Amino Acid Sequence , Culture
2.
Biol Lett ; 19(12): 20230398, 2023 12.
Article in English | MEDLINE | ID: mdl-38087939

ABSTRACT

The phylum Rozellomycota has been proposed for a group of early-branching holomycotan lineages representing obligate parasites and hyperparasites of zoosporic fungi, oomycotes or phytoplankton. Given their predominantly intracellular lifestyle, rozellids are typically known from environmental ribosomal DNA data, except for the well-studied Rozella species. To date, the phylogenetic relationship between rozellids and microsporidians (Microsporidia) is not fully understood and most reliable hypotheses are based on phylogenomic analyses that incorporate the only publicly available rozellid genome of Rozella allomycis. Here, we provide genomic data of three new rozellid lineages obtained by single-cell sequencing from environmental samples and show with a phylogenomic approach that rozellids form a monophyletic group that is sister to microsporidians, corroborating the previously proposed phylum Rozellomycota. Whereas no mitochondrial genes coding for the respiratory Complex I could be found, we discovered a gene coding for a nucleotide phosphate transporter in one of the three draft genomes. The scattered absence of Complex I genes and scattered presence of nucleotide transporter genes across diverse microsporidian and rozellid lineages suggest that these adaptations to a parasitic lifestyle, which reduce the parasite's capability to synthesize ATP but enables it to steal ATP from its host, evolved independently in microsporidians and rozellids.


Subject(s)
Microsporidia , Microsporidia/genetics , Phylogeny , Genome, Fungal , Genomics , Nucleotides , Adenosine Triphosphate
3.
MycoKeys ; 100: 245-260, 2023.
Article in English | MEDLINE | ID: mdl-38162290

ABSTRACT

Nephridiophagids are unicellular fungi (Chytridiomycota) that infect the Malpighian tubules of insects. Most species have been found in cockroach hosts and belong to the genus Nephridiophaga. Three additional genera have been described from beetles and an earwig. Here, we characterise morphologically and molecular phylogenetically the nephridiophagids of the European earwig Forficulaauricularia and the mallow beetle Podagricamalvae. Their morphology and life cycle stages resemble those of other nephridiophagids, but their rRNA gene sequences support the existence of two additional genera. Whereas the earwig nephridiophagid (Nephridiochytriumforficulaegen. nov. et sp. nov.) forms a sister lineage of the Nephridiophaga cluster, the mallow beetle nephridiophagid (Malpighivincopodagricaegen. nov. et sp. nov.) represents the earliest divergent lineage within the nephridiophagids, being sister to all other species. Our results corroborate the hypothesis that different insect groups harbour distinct nephridiophagid lineages.

4.
Curr Biol ; 32(16): 3628-3635.e3, 2022 08 22.
Article in English | MEDLINE | ID: mdl-35830854

ABSTRACT

Phylogenomic analyses have boosted our understanding of the evolutionary trajectories of all living forms by providing continuous improvements to the tree of life.1-5 Within this tree, fungi represent an ancient eukaryote group,6 having diverged from the animals ∼1.35 billion years ago.7 Estimates of the number of extant species range between 1.5 and 3.8 million.8,9 Recent reclassifications and the discovery of the deep-branching Sanchytriomycota lineage10 have brought the number of proposed phyla to 20,11 21 if the Microsporidia are included.12-14 Uncovering how the diverse and globally distributed fungi are related to each other is fundamental for understanding how their lifestyles, morphologies, and metabolic capacities evolved. To date, many of the proposed relationships among the phyla remain controversial and no phylogenomic study has examined the entire fungal tree using a taxonomically comprehensive dataset and suitable models of evolution. We assembled and curated a 299-protein dataset with a taxon sampling broad enough to encompass all recognized fungal diversity with available data, but selective enough to run computationally intensive analyses using best-fitting models. Using a range of reconstruction methods, we were able to resolve many contested nodes, such as a sister relationship of Chytridiomyceta to all other non-Opisthosporidia fungi (with Chytridiomycota being sister to Monoblepharomycota + Neocallimastigomycota), a branching of Blastocladiomycota + Sanchytriomycota after the Chytridiomyceta but before other non-Opisthosporidia fungi, and a branching of Glomeromycota as sister to the Dikarya. Our up-to-date fungal tree of life will serve as a springboard for future investigations on the early evolution of fungi.


Subject(s)
Chytridiomycota , Microsporidia , Animals , Eukaryota , Evolution, Molecular , Fungi/genetics , Phylogeny
5.
Nat Commun ; 12(1): 6651, 2021 11 17.
Article in English | MEDLINE | ID: mdl-34789758

ABSTRACT

The endosymbiotic origin of plastids from cyanobacteria gave eukaryotes photosynthetic capabilities and launched the diversification of countless forms of algae. These primary plastids are found in members of the eukaryotic supergroup Archaeplastida. All known archaeplastids still retain some form of primary plastids, which are widely assumed to have a single origin. Here, we use single-cell genomics from natural samples combined with phylogenomics to infer the evolutionary origin of the phylum Picozoa, a globally distributed but seemingly rare group of marine microbial heterotrophic eukaryotes. Strikingly, the analysis of 43 single-cell genomes shows that Picozoa belong to Archaeplastida, specifically related to red algae and the phagotrophic rhodelphids. These picozoan genomes support the hypothesis that Picozoa lack a plastid, and further reveal no evidence of an early cryptic endosymbiosis with cyanobacteria. These findings change our understanding of plastid evolution as they either represent the first complete plastid loss in a free-living taxon, or indicate that red algae and rhodelphids obtained their plastids independently of other archaeplastids.


Subject(s)
Eukaryota/genetics , Plastids/genetics , Rhodophyta/genetics , Biological Evolution , Eukaryota/classification , Genetic Variation , Genome/genetics , Genomics , Phylogeny , Rhodophyta/classification , Single-Cell Analysis
6.
Fungal Divers ; 109(1): 59-98, 2021.
Article in English | MEDLINE | ID: mdl-34608378

ABSTRACT

The increasing number of new fungal species described from all over the world along with the use of genetics to define taxa, has dramatically changed the classification system of early-diverging fungi over the past several decades. The number of phyla established for non-Dikarya fungi has increased from 2 to 17. However, to date, both the classification and phylogeny of the basal fungi are still unresolved. In this article, we review the recent taxonomy of the basal fungi and re-evaluate the relationships among early-diverging lineages of fungal phyla. We also provide information on the ecology and distribution in Mucoromycota and highlight the impact of chytrids on amphibian populations. Species concepts in Chytridiomycota, Aphelidiomycota, Rozellomycota, Neocallimastigomycota are discussed in this paper. To preserve the current application of the genus Nephridiophaga (Chytridiomycota: Nephridiophagales), a new type species, Nephridiophaga blattellae, is proposed.

7.
PLoS Biol ; 19(8): e3001365, 2021 08.
Article in English | MEDLINE | ID: mdl-34358228

ABSTRACT

Phylogenomic analyses of hundreds of protein-coding genes aimed at resolving phylogenetic relationships is now a common practice. However, no software currently exists that includes tools for dataset construction and subsequent analysis with diverse validation strategies to assess robustness. Furthermore, there are no publicly available high-quality curated databases designed to assess deep (>100 million years) relationships in the tree of eukaryotes. To address these issues, we developed an easy-to-use software package, PhyloFisher (https://github.com/TheBrownLab/PhyloFisher), written in Python 3. PhyloFisher includes a manually curated database of 240 protein-coding genes from 304 eukaryotic taxa covering known eukaryotic diversity, a novel tool for ortholog selection, and utilities that will perform diverse analyses required by state-of-the-art phylogenomic investigations. Through phylogenetic reconstructions of the tree of eukaryotes and of the Saccharomycetaceae clade of budding yeasts, we demonstrate the utility of the PhyloFisher workflow and the provided starting database to address phylogenetic questions across a large range of evolutionary time points for diverse groups of organisms. We also demonstrate that undetected paralogy can remain in phylogenomic "single-copy orthogroup" datasets constructed using widely accepted methods such as all vs. all BLAST searches followed by Markov Cluster Algorithm (MCL) clustering and application of automated tree pruning algorithms. Finally, we show how the PhyloFisher workflow helps detect inadvertent paralog inclusions, allowing the user to make more informed decisions regarding orthology assignments, leading to a more accurate final dataset.


Subject(s)
Eukaryota/genetics , Phylogeny , Software
9.
Syst Biol ; 71(1): 105-120, 2021 12 16.
Article in English | MEDLINE | ID: mdl-33988690

ABSTRACT

The origin of plastids was a major evolutionary event that paved the way for an astonishing diversification of photosynthetic eukaryotes. Plastids originated by endosymbiosis between a heterotrophic eukaryotic host and cyanobacteria, presumably in a common ancestor of the primary photosynthetic eukaryotes (Archaeplastida). A single origin of primary plastids is well supported by plastid evidence but not by nuclear phylogenomic analyses, which have consistently failed to recover the monophyly of Archaeplastida hosts. Importantly, plastid monophyly and nonmonophyletic hosts could be explained under scenarios of independent or serial eukaryote-to-eukaryote endosymbioses. Here, we assessed the strength of the signal for the monophyly of Archaeplastida hosts in four available phylogenomic data sets. The effect of phylogenetic methodology, data quality, alignment trimming strategy, gene and taxon sampling, and the presence of outlier genes were investigated. Our analyses revealed a lack of support for host monophyly in the shorter individual data sets. However, when analyzed together under rigorous data curation and complex mixture models, the combined nuclear data sets supported the monophyly of primary photosynthetic eukaryotes (Archaeplastida) and recovered a putative association with plastid-lacking Picozoa. This study represents an important step toward better understanding deep eukaryotic evolution and the origin of plastids. [Archaeplastida; Bayesian; chloroplast; maximum likelihood; mixture model; ortholog; outlier loci; paralog; protist.].


Subject(s)
Eukaryota , Plastids , Bayes Theorem , Eukaryota/genetics , Phylogeny , Plastids/genetics , Symbiosis/genetics
10.
Nat Commun ; 12(1): 1879, 2021 03 25.
Article in English | MEDLINE | ID: mdl-33767194

ABSTRACT

In modern oceans, eukaryotic phytoplankton is dominated by lineages with red algal-derived plastids such as diatoms, dinoflagellates, and coccolithophores. Despite the ecological importance of these groups and many others representing a huge diversity of forms and lifestyles, we still lack a comprehensive understanding of their evolution and how they obtained their plastids. New hypotheses have emerged to explain the acquisition of red algal-derived plastids by serial endosymbiosis, but the chronology of these putative independent plastid acquisitions remains untested. Here, we establish a timeframe for the origin of red algal-derived plastids under scenarios of serial endosymbiosis, using Bayesian molecular clock analyses applied on a phylogenomic dataset with broad sampling of eukaryote diversity. We find that the hypotheses of serial endosymbiosis are chronologically possible, as the stem lineages of all red plastid-containing groups overlap in time. This period in the Meso- and Neoproterozoic Eras set the stage for the later expansion to dominance of red algal-derived primary production in the contemporary oceans, which profoundly altered the global geochemical and ecological conditions of the Earth.


Subject(s)
Evolution, Molecular , Plastids/genetics , Rhodophyta/genetics , Biological Evolution , Diatoms/genetics , Dinoflagellida/genetics , Haptophyta/genetics , Oceans and Seas , Photosynthesis/genetics , Photosynthesis/physiology , Plastids/metabolism , Symbiosis/genetics
11.
Sci Rep ; 11(1): 396, 2021 01 11.
Article in English | MEDLINE | ID: mdl-33431987

ABSTRACT

Nephridiophagids are unicellular eukaryotes that parasitize the Malpighian tubules of numerous insects. Their life cycle comprises multinucleate vegetative plasmodia that divide into oligonucleate and uninucleate cells, and sporogonial plasmodia that form uninucleate spores. Nephridiophagids are poor in morphological characteristics, and although they have been tentatively identified as early-branching fungi based on the SSU rRNA gene sequences of three species, their exact position within the fungal tree of live remained unclear. In this study, we describe two new species of nephridiophagids (Nephridiophaga postici and Nephridiophaga javanicae) from cockroaches. Using long-read sequencing of the nearly complete rDNA operon of numerous further species obtained from cockroaches and earwigs to improve the resolution of the phylogenetic analysis, we found a robust affiliation of nephridiophagids with the Chytridiomycota-a group of zoosporic fungi that comprises parasites of diverse host taxa, such as microphytes, plants, and amphibians. The presence of the same nephridiophagid species in two only distantly related cockroaches indicates that their host specificity is not as strict as generally assumed.


Subject(s)
Cockroaches/microbiology , DNA, Ribosomal/genetics , Fungi/physiology , Genes, Fungal , Animals , Chytridiomycota/classification , Chytridiomycota/genetics , Chytridiomycota/physiology , Cockroaches/classification , DNA, Fungal/genetics , DNA, Ribosomal/analysis , Fungi/classification , Fungi/genetics , Host Specificity/genetics , Host-Pathogen Interactions/genetics , Phylogeny , Sequence Analysis, DNA , Spores, Fungal/genetics
12.
Mol Phylogenet Evol ; 149: 106839, 2020 08.
Article in English | MEDLINE | ID: mdl-32325195

ABSTRACT

Alveolates are a major supergroup of eukaryotes encompassing more than ten thousand free-living and parasitic species, including medically, ecologically, and economically important apicomplexans, dinoflagellates, and ciliates. These three groups are among the most widespread eukaryotes on Earth, and their environmental success can be linked to unique innovations that emerged early in each group. Understanding the emergence of these well-studied and diverse groups and their innovations has relied heavily on the discovery and characterization of early-branching relatives, which allow ancestral states to be inferred with much greater confidence. Here we report the phylogenomic analyses of 313 eukaryote protein-coding genes from transcriptomes of three members of one such group, the colponemids (Colponemidia), which support their monophyly and position as the sister lineage to all other known alveolates. Colponemid-related sequences from environmental surveys and our microscopical observations show that colponemids are not common in nature, but they are diverse and widespread in freshwater habitats around the world. Studied colponemids possess two types of extrusive organelles (trichocysts or toxicysts) for active hunting of other unicellular eukaryotes and potentially play an important role in microbial food webs. Colponemids have generally plesiomorphic morphology and illustrate the ancestral state of Alveolata. We further discuss their importance in understanding the evolution of alveolates and the origin of myzocytosis and plastids.


Subject(s)
Alveolata/classification , Predatory Behavior/physiology , Alveolata/genetics , Alveolata/ultrastructure , Animals , Biodiversity , Geography , Phylogeny , Ribosome Subunits, Small/genetics
13.
Mol Biol Evol ; 36(4): 757-765, 2019 04 01.
Article in English | MEDLINE | ID: mdl-30668767

ABSTRACT

The resolution of the broad-scale tree of eukaryotes is constantly improving, but the evolutionary origin of several major groups remains unknown. Resolving the phylogenetic position of these "orphan" groups is important, especially those that originated early in evolution, because they represent missing evolutionary links between established groups. Telonemia is one such orphan taxon for which little is known. The group is composed of molecularly diverse biflagellated protists, often prevalent although not abundant in aquatic environments. Telonemia has been hypothesized to represent a deeply diverging eukaryotic phylum but no consensus exists as to where it is placed in the tree. Here, we established cultures and report the phylogenomic analyses of three new transcriptome data sets for divergent telonemid lineages. All our phylogenetic reconstructions, based on 248 genes and using site-heterogeneous mixture models, robustly resolve the evolutionary origin of Telonemia as sister to the Sar supergroup. This grouping remains well supported when as few as 60% of the genes are randomly subsampled, thus is not sensitive to the sets of genes used but requires a minimal alignment length to recover enough phylogenetic signal. Telonemia occupies a crucial position in the tree to examine the origin of Sar, one of the most lineage-rich eukaryote supergroups. We propose the moniker "TSAR" to accommodate this new mega-assemblage in the phylogeny of eukaryotes.


Subject(s)
Eukaryota/genetics , Phylogeny , Eukaryota/metabolism , Transcriptome
14.
J Eukaryot Microbiol ; 66(3): 519-524, 2019 05.
Article in English | MEDLINE | ID: mdl-30080299

ABSTRACT

Recent surveys of marine microbial diversity have identified a previously unrecognized lineage of diplonemid protists as being among the most diverse heterotrophic eukaryotes in global oceans. Despite their monophyly (and assumed importance), they lack a formal taxonomic description, and are informally known as deep-sea pelagic diplonemids (DSPDs) or marine diplonemids. Recently, we documented morphology and molecular sequences from several DSPDs, one of which is particularly widespread and abundant in environmental sequence data. To simplify the communication of future work on this important group, here we formally propose to erect the family Eupelagonemidae to encompass this clade, as well as a formal genus and species description for the apparently most abundant phylotype, Eupelagonema oceanica, for which morphological information and single-cell amplified genome data are currently available.


Subject(s)
Euglenozoa/classification , Euglenozoa/cytology , Euglenozoa/genetics , Phylogeny , RNA, Protozoan/analysis
15.
J Eukaryot Microbiol ; 66(4): 574-581, 2019 07.
Article in English | MEDLINE | ID: mdl-30444565

ABSTRACT

Spores of the dinoflagellate Chytriodinium are known to infest copepod eggs causing their lethality. Despite the potential to control the population of such an ecologically important host, knowledge about Chytriodinium parasites is limited: we know little about phylogeny, parasitism, abundance, or geographical distribution. We carried out genome sequence surveys on four manually isolated sporocytes from the same sporangium, which seemed to be attached to a copepod nauplius, to analyze the phylogenetic position of Chytriodinium based on SSU and concatenated SSU/LSU rRNA gene sequences, and also characterize two genes related to the plastidial heme pathway, hemL and hemY. The results suggest the presence of a cryptic plastid in Chytriodinium and a photosynthetic ancestral state of the parasitic Chytriodinium/Dissodinium clade. Finally, by mapping Tara Oceans V9 SSU amplicon data to the recovered SSU rRNA gene sequences from the sporocytes, we show that globally, Chytriodinium parasites are most abundant within the pico/nano- and mesoplankton of the surface ocean and almost absent within microplankton, a distribution indicating that they generally exist either as free-living spores or host-associated sporangia.


Subject(s)
Copepoda/parasitology , Dinoflagellida/physiology , Genome, Protozoan , Host-Parasite Interactions , Animals , Dinoflagellida/classification , Dinoflagellida/genetics , Genes, Protozoan , Genes, rRNA , Phylogeny , Plastids/physiology
16.
J Eukaryot Microbiol ; 65(1): 77-92, 2018 01.
Article in English | MEDLINE | ID: mdl-28682523

ABSTRACT

The guts of lower termites are inhabited by host-specific consortia of cellulose-digesting flagellate protists. In this first investigation of the symbionts of the family Serritermitidae, we found that Glossotermes oculatus and Serritermes serrifer each harbor similar parabasalid morphotypes: large Pseudotrichonympha-like cells, medium-sized Leptospironympha-like cells with spiraled bands of flagella, and small Hexamastix-like cells; oxymonadid flagellates were absent. Despite their morphological resemblance to Pseudotrichonympha and Leptospironympha, a SSU rRNA-based phylogenetic analysis identified the two larger, trichonymphid flagellates as deep-branching sister groups of Teranymphidae, with Leptospironympha sp. (the only spirotrichosomid with sequence data) in a moderately supported basal position. Only the Hexamastix-like flagellates are closely related to trichomonadid flagellates from Rhinotermitidae. The presence of two deep-branching lineages of trichonymphid flagellates in Serritermitidae and the absence of all taxa characteristic of the ancestral rhinotermitids underscores that the flagellate assemblages in the hindguts of lower termites were shaped not only by a progressive loss of flagellates during vertical inheritance but also by occasional transfaunation events, where flagellates were transferred horizontally between members of different termite families. In addition to the molecular phylogenetic analyses, we present a detailed morphological characterization of the new spirotrichosomid genus Heliconympha using light and electron microscopy.


Subject(s)
Gastrointestinal Microbiome , Isoptera/parasitology , Parabasalidea/classification , Animals , Microscopy, Electron, Scanning , Microscopy, Electron, Transmission , Parabasalidea/cytology , Parabasalidea/genetics , Parabasalidea/ultrastructure , RNA, Protozoan/analysis , RNA, Ribosomal/analysis
17.
ISME J ; 12(1): 304-308, 2018 01.
Article in English | MEDLINE | ID: mdl-28994824

ABSTRACT

Marine alveolates (MALVs) are diverse and widespread early-branching dinoflagellates, but most knowledge of the group comes from a few cultured species that are generally not abundant in natural samples, or from diversity analyses of PCR-based environmental SSU rRNA gene sequences. To more broadly examine MALV genomes, we generated single cell genome sequences from seven individually isolated cells. Genes expected of heterotrophic eukaryotes were found, with interesting exceptions like presence of proteorhodopsin and vacuolar H+-pyrophosphatase. Phylogenetic analysis of concatenated SSU and LSU rRNA gene sequences provided strong support for the paraphyly of MALV lineages. Dinoflagellate viral nucleoproteins were found only in MALV groups that branched as sister to dinokaryotes. Our findings indicate that multiple independent origins of several characteristics early in dinoflagellate evolution, such as a parasitic life style, underlie the environmental diversity of MALVs, and suggest they have more varied trophic modes than previously thought.


Subject(s)
Dinoflagellida/genetics , Dinoflagellida/classification , Genes, rRNA , Genomics , Phylogeny , Single-Cell Analysis
18.
Curr Biol ; 26(22): 3053-3059, 2016 11 21.
Article in English | MEDLINE | ID: mdl-27875688

ABSTRACT

Recent global surveys of marine biodiversity have revealed that a group of organisms known as "marine diplonemids" constitutes one of the most abundant and diverse planktonic lineages [1]. Though discovered over a decade ago [2, 3], their potential importance was unrecognized, and our knowledge remains restricted to a single gene amplified from environmental DNA, the 18S rRNA gene (small subunit [SSU]). Here, we use single-cell genomics (SCG) and microscopy to characterize ten marine diplonemids, isolated from a range of depths in the eastern North Pacific Ocean. Phylogenetic analysis confirms that the isolates reflect the entire range of marine diplonemid diversity, and comparisons to environmental SSU surveys show that sequences from the isolates range from rare to superabundant, including the single most common marine diplonemid known. SCG generated a total of ∼915 Mbp of assembled sequence across all ten cells and ∼4,000 protein-coding genes with homologs in the Kyoto Encyclopedia of Genes and Genomes (KEGG) orthology database, distributed across categories expected for heterotrophic protists. Models of highly conserved genes indicate a high density of non-canonical introns, lacking conventional GT-AG splice sites. Mapping metagenomic datasets [4] to SCG assemblies reveals virtually no overlap, suggesting that nuclear genomic diversity is too great for representative SCG data to provide meaningful phylogenetic context to metagenomic datasets. This work provides an entry point to the future identification, isolation, and cultivation of these elusive yet ecologically important cells. The high density of nonconventional introns, however, also portends difficulty in generating accurate gene models and highlights the need for the establishment of stable cultures and transcriptomic analyses.


Subject(s)
Euglenozoa/classification , Euglenozoa/genetics , Genome, Protozoan , Plankton/classification , Plankton/genetics , Amino Acid Sequence , Biodiversity , California , Euglenozoa/cytology , Metagenomics , Pacific Ocean , Phylogeny , Plankton/cytology , RNA, Protozoan/genetics , Sequence Alignment
19.
Environ Microbiol Rep ; 8(5): 865-873, 2016 Oct.
Article in English | MEDLINE | ID: mdl-27518440

ABSTRACT

The flagellate protists in the hindgut of lower termites play an essential role in the digestion of lignocellulose. Most flagellate species are associated with host-specific symbionts from various bacterial lineages, which typically lack cultured representatives. In this study, we analyzed the genome of 'Candidatus Ancillula trichonymphae', an endosymbiont of Trichonympha flagellates from dry-wood termites, which represents a novel, family-level lineage of uncultured Actinobacteria encountered so far only in termite guts. The draft genome of 'Ca. A. trichonymphae' (ca. 1.48 Mbp; 95% complete) revealed a purely fermentative metabolism that is probably fueled by xylose, N-acetyl-glucosamine and glycerol 3-phosphate acquired from the flagellate host. The absence of fructose bisphosphate aldolase and the presence of a complete gene set encoding the phosphoketolase pathway underscore the sister position of the new lineage to Bifidobacteriaceae. The preservation of the pathways for the assimilation of ammonia and the synthesis of 18 amino acids and several cofactors and vitamins suggests that 'Ca. A. trichonymphae' - like other endosymbionts of termite gut flagellates - provides essential amino acids and vitamins to its host. Our findings corroborate the emerging concept that numerous lineages of unrelated flagellate endosymbionts have convergently evolved to fill similar ecological niches.

20.
Environ Microbiol ; 18(8): 2548-64, 2016 09.
Article in English | MEDLINE | ID: mdl-26914459

ABSTRACT

Termite gut flagellates are typically colonized by specific bacterial symbionts. Here we describe the phylogeny, ultrastructure and subcellular location of 'Candidatus Adiutrix intracellularis', an intracellular symbiont of Trichonympha collaris in the termite Zootermopsis nevadensis. It represents a novel, deep-branching clade of uncultured Deltaproteobacteria widely distributed in intestinal tracts of termites and cockroaches. Fluorescence in situ hybridization and transmission electron microscopy localized the endosymbiont near hydrogenosomes in the posterior part and near the ectosymbiont 'Candidatus Desulfovibrio trichonymphae' in the anterior part of the host cell. The draft genome of 'Ca. Adiutrix intracellularis' obtained from a metagenomic library revealed the presence of a complete gene set encoding the Wood-Ljungdahl pathway, including two homologs of fdhF encoding hydrogenase-linked formate dehydrogenases (FDHH ) and all other components of the recently described hydrogen-dependent carbon dioxide reductase (HDCR) complex, which substantiates previous claims that the symbiont is capable of reductive acetogenesis from CO2 and H2 . The close phylogenetic relationship between the HDCR components and their homologs in homoacetogenic Firmicutes and Spirochaetes suggests that the deltaproteobacterium acquired the capacity for homoacetogenesis via lateral gene transfer. The presence of genes for nitrogen fixation and the biosynthesis of amino acids and cofactors indicate the nutritional nature of the symbiosis.


Subject(s)
Deltaproteobacteria/classification , Deltaproteobacteria/isolation & purification , Hypermastigia/microbiology , Intestines/microbiology , Isoptera/parasitology , Animals , Deltaproteobacteria/genetics , Desulfovibrio/genetics , Formate Dehydrogenases/genetics , Gene Transfer, Horizontal/genetics , In Situ Hybridization, Fluorescence , Nitrogen Fixation/genetics , Phylogeny , Symbiosis
SELECTION OF CITATIONS
SEARCH DETAIL
...