Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 13 de 13
Filter
Add more filters










Publication year range
1.
Biology (Basel) ; 12(9)2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37759560

ABSTRACT

Humans can recombine thousands of different facial expressions. This variability is due to the ability to voluntarily or involuntarily modulate emotional expressions, which, in turn, depends on the existence of two anatomically separate pathways. The Voluntary (VP) and Involuntary (IP) pathways mediate the production of posed and spontaneous facial expressions, respectively, and might also affect the left and right sides of the face differently. This is a neglected aspect in the literature on emotion, where posed expressions instead of genuine expressions are often used as stimuli. Two experiments with different induction methods were specifically designed to investigate the unfolding of spontaneous and posed facial expressions of happiness along the facial vertical axis (left, right) with a high-definition 3-D optoelectronic system. The results showed that spontaneous expressions were distinguished from posed facial movements as revealed by reliable spatial and speed key kinematic patterns in both experiments. Moreover, VP activation produced a lateralization effect: compared with the felt smile, the posed smile involved an initial acceleration of the left corner of the mouth, while an early deceleration of the right corner occurred in the second phase of the movement, after the velocity peak.

2.
Front Psychol ; 14: 1158136, 2023.
Article in English | MEDLINE | ID: mdl-37179857

ABSTRACT

While approaching celebrations for the 150 years of "The Expression of the Emotions in Man and Animals", scientists' conclusions on emotion expression are still debated. Emotion expression has been traditionally anchored to prototypical and mutually exclusive facial expressions (e.g., anger, disgust, fear, happiness, sadness, and surprise). However, people express emotions in nuanced patterns and - crucially - not everything is in the face. In recent decades considerable work has critiqued this classical view, calling for a more fluid and flexible approach that considers how humans dynamically perform genuine expressions with their bodies in context. A growing body of evidence suggests that each emotional display is a complex, multi-component, motoric event. The human face is never static, but continuously acts and reacts to internal and environmental stimuli, with the coordinated action of muscles throughout the body. Moreover, two anatomically and functionally different neural pathways sub-serve voluntary and involuntary expressions. An interesting implication is that we have distinct and independent pathways for genuine and posed facial expressions, and different combinations may occur across the vertical facial axis. Investigating the time course of these facial blends, which can be controlled consciously only in part, is recently providing a useful operational test for comparing the different predictions of various models on the lateralization of emotions. This concise review will identify shortcomings and new challenges regarding the study of emotion expressions at face, body, and contextual levels, eventually resulting in a theoretical and methodological shift in the study of emotions. We contend that the most feasible solution to address the complex world of emotion expression is defining a completely new and more complete approach to emotional investigation. This approach can potentially lead us to the roots of emotional display, and to the individual mechanisms underlying their expression (i.e., individual emotional signatures).

3.
Front Physiol ; 11: 297, 2020.
Article in English | MEDLINE | ID: mdl-32328001

ABSTRACT

The aim of the present study was to investigate the effect of Tai Chi (TC) and mental imagery (MI) on motor performance. MI is the ability of representing different types of images and it can be improved through constant practice (e.g., of TC). The majority of previous literature has mainly investigated the impact of this mental factor by means of qualitative indexes, whereas studies considering more rigorous measures such as kinematic parameters are rare. In this vein, little is known about how MI can affect reach-to-grasp, one of the most studied models in kinematic research. The present study attempts to fill that gap by investigating the relationship between MI and motor performance in TC, a practice that largely promotes the adoption of mental training. One TC master, four instructors, ten apprentices and fifteen untrained participants were requested to reach toward and grasp an object while mentally representing one out of five different images related to water with an increasing degree of dynamicity and expansion (i.e., still water, flowing water, wave, whirlpool, and opening water flower). Kinematic profiles of movements were recorded by means of six infra-red cameras using a 3-D motion analysis system. We tested whether: (i) focusing on MI during the task would help in optimizing motor efficiency, and (ii) expertise in TC would be reflected in higher flexibility during the task. The results indicate that kinematics is highly sensitive to MI and TC practice. In particular, our main finding suggests a statistically significant general improvement in motor efficiency for the TC group and a beneficial effect for all the participants when focusing on the most expansive image (i.e., opening water flower). Moreover, regression analysis indicates that MI and TC practice make online control more flexible in an experience-based way. These results have important implications for the use of mental imagery and TC in the retraining of motor function in people with physical disabilities.

4.
Anim Cogn ; 20(2): 359-366, 2017 Mar.
Article in English | MEDLINE | ID: mdl-27990563

ABSTRACT

When a monkey selects a piece of food lying on the ground from among other viable objects in the near vicinity, only the desired item governs the particular pattern and direction of the animal's reaching action. It would seem then that selection is an important component controlling the animal's action. But, we may ask, is the selection process in such cases impervious to the presence of other objects that could constitute potential obstacles to or constraints on movement execution? And if it is, in fact, pervious to other objects, do they have a direct influence on the organization of the response? The kinematics of macaques' reaching movements were examined by the current study that analysed some exemplars as they selectively reached to grasp a food item in the absence as well as in the presence of potential obstacles (i.e., stones) that could affect the arm trajectory. Changes in movement parameterization were noted in temporal measures, such as movement time, as well as in spatial ones, such as paths of trajectory. Generally speaking, the presence of stones in the vicinity of the acting hand stalled the reaching movement and affected the arm trajectory as the hand veered away from the stone even when it was not a physical obstacle. We concluded that nearby objects evoke a motor response in macaques, and the attentional mechanisms that allow for a successful action selection are revealed in the reaching path. The data outlined here concur with human studies indicating that potential obstacles are internally represented, a finding implying basic cognitive operations allowing for action selection in macaques.


Subject(s)
Attention , Macaca , Movement , Animals , Hand , Hand Strength , Humans , Psychomotor Performance
5.
Neuropsychologia ; 93(Pt A): 106-115, 2016 Dec.
Article in English | MEDLINE | ID: mdl-27756693

ABSTRACT

Increasing evidence suggests that a dysfunctional dopaminergic system affects the ability to socially interact. Since Parkinson's disease (PD) provides a model for assessing dopaminergic dysfunctions in humans, our study was designed to investigate social interactions in PD patients receiving dopamine replacement therapy (Levodopa=l-Dopa) and in neurologically healthy controls. We focused on the kinematics of one action, reaching to grasp a wooden block, which was performed within the context of two basic modes of social cognition, namely cooperation and competition. During the cooperative tasks, two participants were instructed to reach and grasp their respective objects and to cooperate in forming a specific configuration on the working table. During the competitive tasks, two participants were instructed to compete to place their own object at the bottom of a tower to be built on the working table. PD patients' ability to modulate motor patterning depending on the intention motivating the action they were about to perform was evaluated in both "on" (with l-Dopa) and "off" (without l-Dopa) states. Study results revealed that both the healthy controls and the 'on' PD patients had distinct kinematic patterns for cooperative and competitive actions and that these differed from patterns mirroring similar actions performed by those same participants in non social conditions. The kinematic patterns of the healthy controls and the 'on' patients were highly correlated during the cooperative tasks. The 'off' PD patients were, instead, unable to differentiate between isolated and social conditions. These results support the hypothesis that dopaminergic neurotransmission is involved in shaping the mechanisms underlying social interactions.


Subject(s)
Cooperative Behavior , Dopamine Agents/therapeutic use , Interpersonal Relations , Levodopa/therapeutic use , Motor Activity/physiology , Parkinson Disease/physiopathology , Antiparkinson Agents/therapeutic use , Biomechanical Phenomena , Cognition/drug effects , Cognition/physiology , Dopamine/metabolism , Female , Hand/physiopathology , Humans , Male , Middle Aged , Motor Activity/drug effects , Neuropsychological Tests , Parkinson Disease/drug therapy , Parkinson Disease/psychology
6.
Cortex ; 77: 84-94, 2016 Apr.
Article in English | MEDLINE | ID: mdl-26922506

ABSTRACT

Appropriate communication is at the heart of successful, healthy social interactions in humans. Deficits in social communication are a hallmark of several neurological and psychiatric disorders. Yet, very little research has been devoted to understanding the mechanisms underlying these issues. It has been suggested that dopamine is a candidate neurotransmitter system involved in stimulating communication in individuals that are not highly motivated to communicate. A typical model to study dopaminergic dysfunctions in humans is represented by Parkinson's disease (PD) patients, who show motor, cognitive and motivational symptoms. Our study aimed to investigate the effects of social communication on actions in non-demented PD patients receiving dopamine replacement therapy (Levodopa = l-Dopa) and in neurologically healthy control participants. Patients' ability to modulate motor patterning depending on the communicative intention motivating the action to be performed was evaluated both in "on" (with l-Dopa) and "off" (without l-Dopa) states. In two main conditions, participants were requested to reach towards, grasp an object, and either simply lift it (individual condition) or lift it with the intent to communicate a meaning to a partner (communicative condition). Movements' kinematics was recorded using a three-dimensional motion analysis system. The results indicate that kinematics is sensitive to communicative intention and that l-Dopa treatment has positive effects on translating communicative intentions into specific motor patterns in PD patients. Although the to-be-grasped object remained the same both the controls and the PD patients in an 'on' state adopted different kinematic patterning for the 'individual' and the 'communication' conditions. The PD patients in the 'off' state, instead, were unable to kinematically differentiate between the two conditions. We contend that social and communicative impairments are associated with abnormalities in dopaminergic pathways.


Subject(s)
Biomechanical Phenomena/physiology , Dopamine/metabolism , Interpersonal Relations , Movement/drug effects , Parkinson Disease/physiopathology , Psychomotor Performance/drug effects , Biomechanical Phenomena/drug effects , Female , Hand Strength , Humans , Intention , Levodopa/therapeutic use , Male , Middle Aged , Parkinson Disease/drug therapy
7.
Cortex ; 70: 179-88, 2015 Sep.
Article in English | MEDLINE | ID: mdl-25804938

ABSTRACT

Dysfunction of the dopaminergic system leads to motor, cognitive and motivational symptoms in brain disorders such as Parkinson's disease (PD). Moreover, the dopaminergic system plays an important role in social interactions. The dopaminergic input to the basal ganglia (BG) thought to integrate social cues during the planning and execution of voluntary movements remains, however, largely unexplored. Since PD provides a model to assess this function in humans, our study aimed to investigate the effects of social intentions on actions in non-demented PDpatients receiving dopamine replacement therapy (Levodopa = l-Dopa) and in neurologically healthy control participants. Patients' ability to modulate motor patterning depending on the intention motivating the action to be performed was evaluated both in "on" (with l-Dopa) and "off" (without l-Dopa) states. Participants were instructed to reach for and to grasp an object; they were then told to hand it to another person (social condition) or to place it on a concave frame (individual condition). A 'passive-observer' condition, which was similar to the 'individual' condition except for the presence of an onlooker who simply observed the scene, was also assessed to exclude the possibility that differences might be due to the presence of another person. Movement kinematics were recorded using a three-dimensional motion analysis system. Study results demonstrated that the controls and the PD patients in an 'on' state adopted different kinematic patterning for the 'social' and the 'individual' conditions; the PD patients in the 'off' state, instead, were unable to kinematically differentiate between the two conditions. These results suggest that l-Dopa treatment has positive effects on translating social intentions into specific motor patterns in PD patients.


Subject(s)
Intention , Movement , Parkinson Disease/physiopathology , Psychomotor Performance , Social Behavior , Antiparkinson Agents/therapeutic use , Basal Ganglia/physiopathology , Biomechanical Phenomena , Case-Control Studies , Female , Hand Strength , Humans , Interpersonal Relations , Levodopa/therapeutic use , Male , Middle Aged , Parkinson Disease/drug therapy
8.
Neuropsychologia ; 64: 169-75, 2014 11.
Article in English | MEDLINE | ID: mdl-25264611

ABSTRACT

Research in the field of psychology and cognitive neuroscience has begun to explore the functional underpinnings of voluntary actions and how they differ from stimulus-driven actions. From these studies one can conclude that the two action modes differ with respect to their neural and behavioural correlates. So far, however, no study has investigated whether the voluntary and stimulus-driven actions also differ in terms of motor programming. We report two experiments in which participants had to perform either voluntary or stimulus-driven reach-to-grasp actions upon the same stimulus. Using kinematic methods, in Experiment 1 we obtained evidence that voluntary actions and stimulus-driven actions translate into differential movement patterns. Results for Experiments 2 suggest that selecting what to do, when to act, and whether to act are characterized by specific kinematic signatures and affect different aspects of the reach-to-grasp movement in a selective fashion. These findings add to current models of volition suggesting that voluntary action control results from an interplay of dissociable subfunctions related to specific decision components: what action execute, when to execute an action, and whether to execute any action.


Subject(s)
Hand Strength/physiology , Intention , Movement/physiology , Psychomotor Performance/physiology , Volition , Adult , Biomechanical Phenomena/physiology , Female , Humans , Male , Young Adult
9.
Front Neurol ; 5: 75, 2014.
Article in English | MEDLINE | ID: mdl-24904519

ABSTRACT

The performance of patients with vascular parkinsonism (VPD) on a reach-to-grasp task was compared with that of patients affected by idiopathic Parkinson's disease (IPD) and age-matched control subjects. The aim of the study was to determine how patients with VPD and IPD compare at the level of the kinematic organization of prehensile actions. We examined how subjects concurrently executed the transport and grasp components of reach-to-grasp movements when grasping differently sized objects. When comparing both VPD and IPD groups to control subjects, all patients showed longer movement duration and smaller hand opening, reflecting bradykinesia and hypometria, respectively. Furthermore, for all patients, the onset of the manipulation component was delayed with respect to the onset of the transport component. However, for patients with VPD this delay was significantly smaller than that found for the IPD group. It is proposed that this reflects a deficit - which is moderate for VPD as compared to IPD patients - in the simultaneous (or sequential) implementation of different segments of a complex movement. Altogether these findings suggest that kinematic analysis of reach-to-grasp movement has the ability to provide potential instruments to characterize different forms of parkinsonism.

10.
Eur J Neurosci ; 39(9): 1528-37, 2014 May.
Article in English | MEDLINE | ID: mdl-24593322

ABSTRACT

In both monkeys and humans, reaching-related sensorimotor transformations involve the activation of a wide fronto-parietal network. Recent neurophysiological evidence suggests that some components of this network host not only neurons encoding the direction of arm reaching movements, but also neurons whose involvement is modulated by the intrinsic features of an object (e.g. size and shape). To date, it has yet to be investigated whether a similar modulation is evident in the human reaching-related areas. To fill this gap, we asked participants to reach towards either a small or a large object while kinematic and electroencephalographic signals were recorded. Behavioral results showed that the precision requirements were taken into account and the kinematics of reaching was modulated depending on the object size. Similarly, reaching-related neural activity at the level of the posterior parietal and premotor cortices was modulated by the level of accuracy determined by object size. We therefore conclude that object size is engaged in the neural computations for reach planning and execution, consistent with the results from physiological studies in non-human primates.


Subject(s)
Frontal Lobe/physiology , Movement/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Space Perception/physiology , Adult , Biomechanical Phenomena , Electroencephalography , Event-Related Potentials, P300 , Female , Humans , Male , Nerve Net/physiology , Young Adult
11.
PLoS One ; 8(6): e65508, 2013.
Article in English | MEDLINE | ID: mdl-23755241

ABSTRACT

BACKGROUND: In non-human primates grasp-related sensorimotor transformations are accomplished in a circuit involving the anterior intraparietal sulcus (area AIP) and both the ventral and the dorsal sectors of the premotor cortex (vPMC and dPMC, respectively). Although a human homologue of such a circuit has been identified, the time course of activation of these cortical areas and how such activity relates to specific kinematic events has yet to be investigated. METHODOLOGY/PRINCIPAL FINDINGS: We combined kinematic and event-related potential techniques to explicitly test how activity within human grasping-related brain areas is modulated in time. Subjects were requested to reach towards and grasp either a small stimulus using a precision grip (i.e., the opposition of index finger and thumb) or a large stimulus using a whole hand grasp (i.e., the flexion of all digits around the stimulus). Results revealed a time course of activation starting at the level of parietal regions and continuing at the level of premotor regions. More specifically, we show that activity within these regions was tuned for specific grasps well before movement onset and this early tuning was carried over--as evidenced by kinematic analysis--during the preshaping period of the task. CONCLUSIONS/SIGNIFICANCE: Data are discussed in terms of recent findings showing a marked differentiation across different grasps during premovement phases which was carried over into subsequent movement phases. These findings offer a substantial contribution to the current debate about the nature of the sensorimotor transformations underlying grasping. And provide new insights into the detailed movement information contained in the human preparatory activity for specific hand movements.


Subject(s)
Evoked Potentials, Motor/physiology , Hand Strength/physiology , Motor Cortex/physiology , Parietal Lobe/physiology , Psychomotor Performance/physiology , Adult , Biomechanical Phenomena , Brain Mapping , Female , Hand/physiology , Humans , Male , Movement/physiology
12.
J Clin Exp Neuropsychol ; 34(9): 977-88, 2012.
Article in English | MEDLINE | ID: mdl-22905854

ABSTRACT

To investigate implicit olfactory abilities in a group of anosmic traumatic brain injured (TBI) patients, an olfactomotor priming paradigm was administered. A group of matched normosmic/mildly microsmic TBI patients and a group of neurologically healthy participants served as controls. For all the groups, an interference effect was evident on the peak velocity of grip aperture when participants grasped a large target preceded by a "small" odor. The present results suggest that some form of implicit olfactory processing is preserved in TBI patients even when diagnosed as anosmic on the basis of explicit olfactory testing.


Subject(s)
Brain Injuries/complications , Feedback, Sensory/physiology , Olfaction Disorders/diagnosis , Olfactory Perception/physiology , Psychomotor Performance/physiology , Adult , Analysis of Variance , Attention/physiology , Biomechanical Phenomena , Case-Control Studies , Hand Strength/physiology , Humans , Middle Aged , Olfaction Disorders/etiology , Photic Stimulation , Reference Values , Severity of Illness Index
13.
PLoS One ; 6(9): e25203, 2011.
Article in English | MEDLINE | ID: mdl-21980396

ABSTRACT

BACKGROUND: Substantial literature has demonstrated that how the hand approaches an object depends on the manipulative action that will follow object contact. Little is known about how the placement of individual fingers on objects is affected by the end-goal of the action. METHODOLOGY/PRINCIPAL FINDINGS: Hand movement kinematics were measured during reaching for and grasping movements towards two objects (stimuli): a bottle with an ordinary cylindrical shape and a bottle with a concave constriction. The effects of the stimuli's weight (half full or completely full of water) and the end-goals (pouring, moving) of the action were also assessed. Analysis of key kinematic landmarks measured during reaching movements indicate that object affordance facilitates the end-goal of the action regardless of accuracy constraints. Furthermore, the placement of individual digits at contact is modulated by the shape of the object and the end-goal of the action. CONCLUSIONS/SIGNIFICANCE: These findings offer a substantial contribution to the current debate about the role played by affordances and end-goals in determining the structure of reach-to-grasp movements.


Subject(s)
Hand Strength/physiology , Adult , Biomechanical Phenomena , Female , Fingers/physiology , Form Perception/physiology , Humans , Male , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL
...