Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
ACS Infect Dis ; 10(2): 398-411, 2024 Feb 09.
Article in English | MEDLINE | ID: mdl-38270149

ABSTRACT

The SARS-CoV-1 spike glycoprotein contains a fusion peptide (FP) segment that mediates the fusion of the viral and host cell membranes. Calcium ions are thought to position the FP optimally for membrane insertion by interacting with negatively charged residues in this segment (E801, D802, D812, E821, D825, and D830); however, which residues bind to calcium and in what combinations supportive of membrane insertion are unknown. Using biological assays and molecular dynamics studies, we have determined the functional configurations of FP-Ca2+ binding that likely promote membrane insertion. We first individually mutated the negatively charged residues in the SARS CoV-1 FP to assay their roles in cell entry and syncytia formation, finding that charge loss in the D802A or D830A mutants greatly reduced syncytia formation and pseudoparticle transduction of VeroE6 cells. Interestingly, one mutation (D812A) led to a modest increase in cell transduction, further indicating that FP function likely depends on calcium binding at specific residues and in specific combinations. To interpret these results mechanistically and identify specific modes of FP-Ca2+ binding that modulate membrane insertion, we performed molecular dynamics simulations of the SARS-CoV-1 FP and Ca2+ions. The preferred residue pairs for Ca2+ binding we identified (E801/D802, E801/D830, and D812/E821) include the two residues found to be essential for S function in our biological studies (D802 and D830). The three preferred Ca2+ binding pairs were also predicted to promote FP membrane insertion. We also identified a Ca2+ binding pair (E821/D825) predicted to inhibit FP membrane insertion. We then carried out simulations in the presence of membranes and found that binding of Ca2+ to SARS-CoV-1 FP residue pairs E801/D802 and D812/E821 facilitates membrane insertion by enabling the peptide to adopt conformations that shield the negative charges of the FP to reduce repulsion by the membrane phospholipid headgroups. This calcium binding mode also optimally positions the hydrophobic LLF region of the FP for membrane penetration. Conversely, Ca2+ binding to the FP E801/D802 and D821/D825 pairs eliminates the negative charge screening and instead creates a repulsive negative charge that hinders membrane penetration of the LLF motif. These computational results, taken together with our biological studies, provide an improved and nuanced mechanistic understanding of the dymanics of SARS-CoV-1 calcium binding and their potential effects on host cell entry.


Subject(s)
Severe acute respiratory syndrome-related coronavirus , Amino Acid Sequence , Calcium/metabolism , Membrane Fusion/physiology , Peptides/chemistry , Ions
2.
SLAS Discov ; 27(2): 86-94, 2022 03.
Article in English | MEDLINE | ID: mdl-35086793

ABSTRACT

Effective small molecule therapies to combat the SARS-CoV-2 infection are still lacking as the COVID-19 pandemic continues globally. High throughput screening assays are needed for lead discovery and optimization of small molecule SARS-CoV-2 inhibitors. In this work, we have applied viral pseudotyping to establish a cell-based SARS-CoV-2 entry assay. Here, the pseudotyped particles (PP) contain SARS-CoV-2 spike in a membrane enveloping both the murine leukemia virus (MLV) gag-pol polyprotein and luciferase reporter RNA. Upon addition of PP to HEK293-ACE2 cells, the SARS-CoV-2 spike protein binds to the ACE2 receptor on the cell surface, resulting in priming by host proteases to trigger endocytosis of these particles, and membrane fusion between the particle envelope and the cell membrane. The internalized luciferase reporter gene is then expressed in cells, resulting in a luminescent readout as a surrogate for spike-mediated entry into cells. This SARS-CoV-2 PP entry assay can be executed in a biosafety level 2 containment lab for high throughput screening. From a collection of 5,158 approved drugs and drug candidates, our screening efforts identified 7 active compounds that inhibited the SARS-CoV-2-S PP entry. Of these seven, six compounds were active against live replicating SARS-CoV-2 virus in a cytopathic effect assay. Our results demonstrated the utility of this assay in the discovery and development of SARS-CoV-2 entry inhibitors as well as the mechanistic study of anti-SARS-CoV-2 compounds. Additionally, particles pseudotyped with spike proteins from SARS-CoV-2 B.1.1.7 and B.1.351 variants were prepared and used to evaluate the therapeutic effects of viral entry inhibitors.


Subject(s)
Antiviral Agents/pharmacology , High-Throughput Screening Assays/methods , SARS-CoV-2/drug effects , Virus Internalization/drug effects , HEK293 Cells , Humans
3.
bioRxiv ; 2021 Oct 05.
Article in English | MEDLINE | ID: mdl-34642691

ABSTRACT

Effective small molecule therapies to combat the SARS-CoV-2 infection are still lacking as the COVID-19 pandemic continues globally. High throughput screening assays are needed for lead discovery and optimization of small molecule SARS-CoV-2 inhibitors. In this work, we have applied viral pseudotyping to establish a cell-based SARS-CoV-2 entry assay. Here, the pseudotyped particles (PP) contain SARS-CoV-2 spike in a membrane enveloping both the murine leukemia virus (MLV) gag-pol polyprotein and luciferase reporter RNA. Upon addition of PP to HEK293-ACE2 cells, the SARS-CoV-2 spike protein binds to the ACE2 receptor on the cell surface, resulting in priming by host proteases to trigger endocytosis of these particles, and membrane fusion between the particle envelope and the cell membrane. The internalized luciferase reporter gene is then expressed in cells, resulting in a luminescent readout as a surrogate for spike-mediated entry into cells. This SARS-CoV-2 PP entry assay can be executed in a biosafety level 2 containment lab for high throughput screening. From a collection of 5,158 approved drugs and drug candidates, our screening efforts identified 7 active compounds that inhibited the SARS-CoV-2-S PP entry. Of these seven, six compounds were active against live replicating SARS-CoV-2 virus in a cytopathic effect assay. Our results demonstrated the utility of this assay in the discovery and development of SARS-CoV-2 entry inhibitors as well as the mechanistic study of anti-SARS-CoV-2 compounds. Additionally, particles pseudotyped with spike proteins from SARS-CoV-2 B.1.1.7 and B.1.351 variants were prepared and used to evaluate the therapeutic effects of viral entry inhibitors.

4.
ACS Infect Dis ; 7(10): 2807-2815, 2021 10 08.
Article in English | MEDLINE | ID: mdl-34498840

ABSTRACT

COVID-19 is caused by a novel coronavirus, the severe acute respiratory syndrome coronavirus (CoV)-2 (SARS-CoV-2). The virus is responsible for an ongoing pandemic and concomitant public health crisis around the world. While vaccine development is proving to be highly successful, parallel drug development approaches are also critical in the response to SARS-CoV-2 and other emerging viruses. Coronaviruses require Ca2+ ions for host cell entry, and we have previously shown that Ca2+ modulates the interaction of the viral fusion peptide with host cell membranes. In an attempt to accelerate drug repurposing, we tested a panel of L-type calcium channel blocker (CCB) drugs currently developed for other conditions to determine whether they would inhibit SARS-CoV-2 infection in cell culture. All the CCBs tested showed varying degrees of inhibition, with felodipine and nifedipine strongly limiting SARS-CoV-2 entry and infection in epithelial lung cells at concentrations where cell toxicity was minimal. Further studies with pseudotyped particles displaying the SARS-CoV-2 spike protein suggested that inhibition occurs at the level of virus entry. Overall, our data suggest that certain CCBs have the potential to treat SARS-CoV-2 infections and are worthy of further examination for possible treatment of COVID-19.


Subject(s)
COVID-19 , Pharmaceutical Preparations , Calcium Channels, L-Type , Humans , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Virus Internalization
5.
ACS Infect Dis ; 7(2): 264-272, 2021 02 12.
Article in English | MEDLINE | ID: mdl-33432808

ABSTRACT

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) uses its spike (S) protein to mediate viral entry into host cells. Cleavage of the S protein at the S1/S2 and/or S2' site(s) is associated with viral entry, which can occur at either the cell plasma membrane (early pathway) or the endosomal membrane (late pathway), depending on the cell type. Previous studies show that SARS-CoV-2 has a unique insert at the S1/S2 site that can be cleaved by furin, which appears to expand viral tropism to cells with suitable protease and receptor expression. Here, we utilize viral pseudoparticles and protease inhibitors to study the impact of the S1/S2 cleavage on infectivity. Our results demonstrate that S1/S2 cleavage is essential for early pathway entry into Calu-3 cells, a model lung epithelial cell line, but not for late pathway entry into Vero E6 cells, a model cell line. The S1/S2 cleavage was found to be processed by other proteases beyond furin. Using bioinformatic tools, we also analyze the presence of a furin S1/S2 site in related CoVs and offer thoughts on the origin of the insertion of the furin-like cleavage site in SARS-CoV-2.


Subject(s)
COVID-19/virology , Furin/metabolism , Peptide Hydrolases/metabolism , SARS-CoV-2/metabolism , Spike Glycoprotein, Coronavirus/metabolism , Animals , Cell Line , Chlorocebus aethiops , HEK293 Cells , Humans , Models, Molecular , Peptide Hydrolases/chemistry , Proteolysis , SARS-CoV-2/chemistry , Vero Cells , Virus Internalization
6.
ACS Pharmacol Transl Sci ; 3(6): 1165-1175, 2020 Dec 11.
Article in English | MEDLINE | ID: mdl-33330839

ABSTRACT

While vaccine development will hopefully quell the global pandemic of COVID-19 caused by SARS-CoV-2, small molecule drugs that can effectively control SARS-CoV-2 infection are urgently needed. Here, inhibitors of spike (S) mediated cell entry were identified in a high throughput screen of an approved drugs library with SARS-S and MERS-S pseudotyped particle entry assays. We discovered six compounds (cepharanthine, abemaciclib, osimertinib, trimipramine, colforsin, and ingenol) to be broad spectrum inhibitors for spike-mediated entry. This work could contribute to the development of effective treatments against the initial stage of viral infection and provide mechanistic information that might aid the design of new drug combinations for clinical trials for COVID-19 patients.

7.
Cell ; 183(6): 1520-1535.e14, 2020 12 10.
Article in English | MEDLINE | ID: mdl-33157038

ABSTRACT

ß-Coronaviruses are a family of positive-strand enveloped RNA viruses that includes the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Much is known regarding their cellular entry and replication pathways, but their mode of egress remains uncertain. Using imaging methodologies and virus-specific reporters, we demonstrate that ß-coronaviruses utilize lysosomal trafficking for egress rather than the biosynthetic secretory pathway more commonly used by other enveloped viruses. This unconventional egress is regulated by the Arf-like small GTPase Arl8b and can be blocked by the Rab7 GTPase competitive inhibitor CID1067700. Such non-lytic release of ß-coronaviruses results in lysosome deacidification, inactivation of lysosomal degradation enzymes, and disruption of antigen presentation pathways. ß-Coronavirus-induced exploitation of lysosomal organelles for egress provides insights into the cellular and immunological abnormalities observed in patients and suggests new therapeutic modalities.


Subject(s)
COVID-19/metabolism , SARS-CoV-2/metabolism , Secretory Pathway , Virus Release , ADP-Ribosylation Factors/metabolism , Animals , COVID-19/pathology , Female , HeLa Cells , Heterocyclic Compounds, 2-Ring/pharmacology , Humans , Lysosomes , Mice , Thiourea/analogs & derivatives , Thiourea/pharmacology , rab GTP-Binding Proteins/antagonists & inhibitors , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins , COVID-19 Drug Treatment
8.
bioRxiv ; 2020 Aug 18.
Article in English | MEDLINE | ID: mdl-32839777

ABSTRACT

While vaccine development will hopefully quell the global pandemic of COVID-19 caused by SARS-CoV-2, small molecule drugs that can effectively control SARS-CoV-2 infection are urgently needed. Here, inhibitors of spike (S) mediated cell entry were identified in a high throughput screen of an approved drugs library with SARS-S and MERS-S pseudotyped particle entry assays. We discovered six compounds (cepharanthine, abemaciclib, osimertinib, trimipramine, colforsin, and ingenol) to be broad spectrum inhibitors for spike-mediated entry. This work should contribute to the development of effective treatments against the initial stage of viral infection, thus reducing viral burden in COVID-19 patients.

9.
J Virol ; 94(13)2020 06 16.
Article in English | MEDLINE | ID: mdl-32295925

ABSTRACT

Fusion with, and subsequent entry into, the host cell is one of the critical steps in the life cycle of enveloped viruses. For Middle East respiratory syndrome coronavirus (MERS-CoV), the spike (S) protein is the main determinant of viral entry. Proteolytic cleavage of the S protein exposes its fusion peptide (FP), which initiates the process of membrane fusion. Previous studies on the related severe acute respiratory syndrome coronavirus (SARS-CoV) FP have shown that calcium ions (Ca2+) play an important role in fusogenic activity via a Ca2+ binding pocket with conserved glutamic acid (E) and aspartic acid (D) residues. SARS-CoV and MERS-CoV FPs share a high sequence homology, and here, we investigated whether Ca2+ is required for MERS-CoV fusion by screening a mutant array in which E and D residues in the MERS-CoV FP were substituted with neutrally charged alanines (A). Upon verifying mutant cell surface expression and proteolytic cleavage, we tested their ability to mediate pseudoparticle (PP) infection of host cells in modulating Ca2+ environments. Our results demonstrate that intracellular Ca2+ enhances MERS-CoV wild-type (WT) PP infection by approximately 2-fold and that E891 is a crucial residue for Ca2+ interaction. Subsequent electron spin resonance (ESR) experiments revealed that this enhancement could be attributed to Ca2+ increasing MERS-CoV FP fusion-relevant membrane ordering. Intriguingly, isothermal calorimetry showed an approximate 1:1 MERS-CoV FP to Ca2+ ratio, as opposed to an 1:2 SARS-CoV FP to Ca2+ ratio, suggesting significant differences in FP Ca2+ interactions of MERS-CoV and SARS-CoV FP despite their high sequence similarity.IMPORTANCE Middle East respiratory syndrome coronavirus (MERS-CoV) is a major emerging infectious disease with zoonotic potential and has reservoirs in dromedary camels and bats. Since its first outbreak in 2012, the virus has repeatedly transmitted from camels to humans, with 2,468 confirmed cases causing 851 deaths. To date, there are no efficacious drugs and vaccines against MERS-CoV, increasing its potential to cause a public health emergency. In order to develop novel drugs and vaccines, it is important to understand the molecular mechanisms that enable the virus to infect host cells. Our data have found that calcium is an important regulator of viral fusion by interacting with negatively charged residues in the MERS-CoV FP region. This information can guide therapeutic solutions to block this calcium interaction and also repurpose already approved drugs for this use for a fast response to MERS-CoV outbreaks.


Subject(s)
Calcium/metabolism , Coronavirus Infections/metabolism , Coronavirus Infections/virology , Host-Pathogen Interactions , Ions/metabolism , Membrane Fusion , Middle East Respiratory Syndrome Coronavirus/physiology , Virus Internalization , Amino Acid Sequence , Amino Acid Substitution , Animals , Cell Line , Chlorocebus aethiops , Humans , Middle East Respiratory Syndrome Coronavirus/pathogenicity , Models, Molecular , Mutation , Protein Binding , Proteolysis , Spike Glycoprotein, Coronavirus/chemistry , Spike Glycoprotein, Coronavirus/genetics , Spike Glycoprotein, Coronavirus/metabolism , Structure-Activity Relationship , Vero Cells , Virulence , Virus Assembly
10.
Virology ; 543: 43-53, 2020 04.
Article in English | MEDLINE | ID: mdl-32056846

ABSTRACT

Viruses possessing class I fusion proteins require proteolytic activation by host cell proteases to mediate fusion with the host cell membrane. The mammalian SPINT2 gene encodes a protease inhibitor that targets trypsin-like serine proteases. Here we show the protease inhibitor, SPINT2, restricts cleavage-activation efficiently for a range of influenza viruses and for human metapneumovirus (HMPV). SPINT2 treatment resulted in the cleavage and fusion inhibition of full-length influenza A/CA/04/09 (H1N1) HA, A/Aichi/68 (H3N2) HA, A/Shanghai/2/2013 (H7N9) HA and HMPV F when activated by trypsin, recombinant matriptase or KLK5. We also demonstrate that SPINT2 was able to reduce viral growth of influenza A/CA/04/09 H1N1 and A/X31 H3N2 in cell culture by inhibiting matriptase or TMPRSS2. Moreover, inhibition efficacy did not differ whether SPINT2 was added at the time of infection or 24 h post-infection. Our data suggest that the SPINT2 inhibitor has a strong potential to serve as a novel broad-spectrum antiviral.


Subject(s)
Influenza A virus/drug effects , Membrane Glycoproteins/metabolism , Membrane Glycoproteins/pharmacology , Metapneumovirus/drug effects , Serine Proteinase Inhibitors/pharmacology , Viral Fusion Proteins/metabolism , Animals , Cell Line , Cell Survival/drug effects , Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Host-Pathogen Interactions , Humans , Influenza A Virus, H1N1 Subtype/drug effects , Influenza A Virus, H1N1 Subtype/growth & development , Influenza A Virus, H1N1 Subtype/metabolism , Influenza A Virus, H1N1 Subtype/physiology , Influenza A Virus, H3N2 Subtype/drug effects , Influenza A Virus, H3N2 Subtype/growth & development , Influenza A Virus, H3N2 Subtype/metabolism , Influenza A Virus, H3N2 Subtype/physiology , Influenza A Virus, H7N9 Subtype/drug effects , Influenza A Virus, H7N9 Subtype/growth & development , Influenza A Virus, H7N9 Subtype/metabolism , Influenza A Virus, H7N9 Subtype/physiology , Influenza A virus/growth & development , Influenza A virus/metabolism , Influenza A virus/physiology , Membrane Glycoproteins/genetics , Metapneumovirus/growth & development , Metapneumovirus/metabolism , Metapneumovirus/physiology , Peptide Hydrolases/metabolism , Protease Inhibitors/pharmacology , Recombinant Proteins/pharmacology , Serine Endopeptidases/metabolism , Serine Proteinase Inhibitors/metabolism , Trypsin Inhibitors/metabolism , Trypsin Inhibitors/pharmacology
11.
Influenza Other Respir Viruses ; 14(2): 189-195, 2020 03.
Article in English | MEDLINE | ID: mdl-31820577

ABSTRACT

BACKGROUND: Influenza is a zoonotic disease that infects millions of people each year resulting in hundreds of thousands of deaths, and in turn devastating pandemics. Influenza is caused by influenza viruses, including influenza A virus (IAV). There are many subtypes of IAV but only a few seem to be able to adapt to humans and to cause disease. In 2013, an H7N9 IAV subtype emerged in China that does not cause clinical symptoms in its chicken host but leads to severe infections when transmitted into humans. Since 2013, there have been six epidemic waves of H7N9 with 1567 laboratory-confirmed human infections and 615 deaths. Pathogenicity of IAV is complex, but a crucial feature contributing to virulence is the activation of the hemagglutinin (HA) fusion protein by host proteases that triggers membrane fusion and leads to subsequent virus propagation. METHODS: 293T, VERO, and MDCK cells were used to conduct Western blot analysis, immunofluorescence assays, and pseudoparticle and live virus infections, and to evaluate H7N9 HA cleavage-activation. RESULTS/CONCLUSIONS: We show that human matriptase/ST 14 is able to cleave H7N9 HA. Cleavage of H7N9 HA expressed in cell culture results in fusogenic HA and syncytia formation. In infection studies with viral pseudoparticles carrying matriptase/ST 14-activated H7N9 HA, we observed a high infectivity of cells. Finally, human matriptase/ST 14 also activated H7N9 live virus which resulted in high infectivity. Our data demonstrate that human matriptase/ST 14 is a likely candidate protease to promote H7N9 infections in humans.


Subject(s)
Hemagglutinin Glycoproteins, Influenza Virus/metabolism , Influenza A Virus, H7N9 Subtype/metabolism , Serine Endopeptidases/metabolism , Animals , Birds , Chlorocebus aethiops , Dogs , HEK293 Cells , Host-Pathogen Interactions , Humans , Influenza A Virus, H7N9 Subtype/growth & development , Influenza in Birds/virology , Influenza, Human/virology , Madin Darby Canine Kidney Cells , Vero Cells , Virulence , Virus Replication
12.
ACS Infect Dis ; 6(2): 250-260, 2020 02 14.
Article in English | MEDLINE | ID: mdl-31746195

ABSTRACT

Ebola virus disease is a serious global health concern given its periodic occurrence, high lethality, and the lack of approved therapeutics. Certain drugs that alter intracellular calcium, particularly in endolysosomes, have been shown to inhibit Ebola virus infection; however, the underlying mechanism is unknown. Here, we provide evidence that Zaire ebolavirus (EBOV) infection is promoted in the presence of calcium as a result of the direct interaction of calcium with the EBOV fusion peptide (FP). We identify the glycoprotein residues D522 and E540 in the FP as functionally critical to EBOV's interaction with calcium. We show using spectroscopic and biophysical assays that interactions of the fusion peptide with Ca2+ ions lead to lipid ordering in the host membrane during membrane fusion, and these changes are promoted at low pH and can be correlated with infectivity. We further demonstrate using circular dichroism spectroscopy that calcium interaction with the fusion peptide promotes α-helical structure of the fusion peptide, a conformational change that enhances membrane fusion, as validated using functional assays of membrane fusion. This study shows that calcium directly targets the Ebola virus fusion peptide and influences its conformation. As these residues are highly conserved across the Filoviridae, calcium's impact on fusion, and subsequently infectivity, is a key interaction that can be leveraged for developing strategies to defend against Ebola infection. This mechanistic insight provides a rationale for the use of calcium-interfering drugs already approved by the FDA as therapeutics against Ebola and enables further development of novel drugs to combat the virus.


Subject(s)
Calcium/metabolism , Ebolavirus/chemistry , Hemorrhagic Fever, Ebola/virology , Viral Fusion Proteins/chemistry , Viral Fusion Proteins/metabolism , Virus Internalization , Animals , Chlorocebus aethiops , Ions , Protein Conformation , Structure-Activity Relationship , Vero Cells
13.
J Vis Exp ; (143)2019 01 09.
Article in English | MEDLINE | ID: mdl-30688313

ABSTRACT

Enveloped viruses such as coronaviruses or influenza virus require proteolytic cleavage of their fusion protein to be able to infect the host cell. Often viruses exhibit cell and tissue tropism and are adapted to specific cell or tissue proteases. Moreover, these viruses can introduce mutations or insertions into their genome during replication that may affect the cleavage, and thus can contribute to adaptations to a new host. Here, we present a fluorogenic peptide cleavage assay that allows a rapid screening of peptides mimicking the cleavage site of viral fusion proteins. The technique is very flexible and can be used to investigate the proteolytic activity of a single protease on many different substrates, and in addition, it also allows exploration of the activity of multiple proteases on one or more peptide substrates. In this study, we used peptides mimicking the cleavage site motifs of the coronavirus spike protein. We tested human and camel derived Middle East Respiratory Syndrome coronaviruses (MERS-CoV) to demonstrate that single and double substitutions in the cleavage site can alter the activity of furin and dramatically change cleavage efficiency. We also used this method in combination with bioinformatics to test furin cleavage activity of feline coronavirus spike proteins from different serotypes and strains. This peptide-based method is less labor- and time intensive than conventional methods used for the analysis of proteolytic activity for viruses, and results can be obtained within a single day.


Subject(s)
Middle East Respiratory Syndrome Coronavirus/genetics , Peptides/metabolism , Proteolysis , Spike Glycoprotein, Coronavirus/genetics , Animals , Camelus , Humans
14.
PLoS One ; 12(3): e0174827, 2017.
Article in English | MEDLINE | ID: mdl-28358853

ABSTRACT

Cleavage activation of the hemagglutinin (HA) protein by host proteases is a crucial step in the infection process of influenza A viruses (IAV). However, IAV exists in eighteen different HA subtypes in nature and their cleavage sites vary considerably. There is uncertainty regarding which specific proteases activate a given HA in the human respiratory tract. Understanding the relationship between different HA subtypes and human-specific proteases will be valuable in assessing the pandemic potential of circulating viruses. Here we utilized fluorogenic peptides mimicking the HA cleavage motif of representative IAV strains causing disease in humans or of zoonotic/pandemic potential and tested them with a range of proteases known to be present in the human respiratory tract. Our results show that peptides from the H1, H2 and H3 subtypes are cleaved efficiently by a wide range of proteases including trypsin, matriptase, human airway tryptase (HAT), kallikrein-related peptidases 5 (KLK5) and 12 (KLK12) and plasmin. Regarding IAVs currently of concern for human adaptation, cleavage site peptides from H10 viruses showed very limited cleavage by respiratory tract proteases. Peptide mimics from H6 viruses showed broader cleavage by respiratory tract proteases, while H5, H7 and H9 subtypes showed variable cleavage; particularly matriptase appeared to be a key protease capable of activating IAVs. We also tested HA substrate specificity of Factor Xa, a protease required for HA cleavage in chicken embryos and relevant for influenza virus production in eggs. Overall our data provide novel tool allowing the assessment of human adaptation of IAV HA subtypes.


Subject(s)
Hemagglutinins/metabolism , Influenza A virus/metabolism , Peptides/metabolism , Factor Xa/genetics , Factor Xa/metabolism , Fibrinolysin/genetics , Fibrinolysin/metabolism , Hemagglutinins/genetics , Humans , Influenza A Virus, H9N2 Subtype/metabolism , Influenza A virus/genetics , Kallikreins/genetics , Kallikreins/metabolism , Peptide Hydrolases/genetics , Peptide Hydrolases/metabolism , Peptides/genetics , Proteolysis , Respiratory System/metabolism , Trypsin/genetics , Trypsin/metabolism
15.
Nucleic Acids Res ; 43(22): 10734-45, 2015 Dec 15.
Article in English | MEDLINE | ID: mdl-26384427

ABSTRACT

The bacterial transposon Tn7 facilitates horizontal transfer by directing transposition into actively replicating DNA with the element-encoded protein TnsE. Structural analysis of the C-terminal domain of wild-type TnsE identified a novel protein fold including a central V-shaped loop that toggles between two distinct conformations. The structure of a robust TnsE gain-of-activity variant has this loop locked in a single conformation, suggesting that conformational flexibility regulates TnsE activity. Structure-based analysis of a series of TnsE mutants relates transposition activity to DNA binding stability. Wild-type TnsE appears to naturally form an unstable complex with a target DNA, whereas mutant combinations required for large changes in transposition frequency and targeting stabilized this interaction. Collectively, our work unveils a unique structural proofreading mechanism where toggling between two conformations regulates target commitment by limiting the stability of target DNA engagement until an appropriate insertion site is identified.


Subject(s)
Bacterial Proteins/chemistry , DNA Transposable Elements , DNA-Binding Proteins/chemistry , Transposases/metabolism , Alanine/chemistry , Bacterial Proteins/genetics , Bacterial Proteins/metabolism , DNA/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Models, Molecular , Mutation , Protein Folding , Protein Structure, Tertiary
16.
Plant J ; 62(4): 628-40, 2010 May 01.
Article in English | MEDLINE | ID: mdl-20163553

ABSTRACT

Reactive oxygen species (ROS) have emerged as signals in the responses of plants to stress. Arabidopsis Enhanced Disease Susceptibility1 (EDS1) regulates defense and cell death against biotrophic pathogens and controls cell death propagation in response to chloroplast-derived ROS. Arabidopsis Nudix hydrolase7 (nudt7) mutants are sensitized to photo-oxidative stress and display EDS1-dependent enhanced resistance, salicylic acid (SA) accumulation and initiation of cell death. Here we explored the relationship between EDS1, EDS1-regulated SA and ROS by examining gene expression profiles, photo-oxidative stress and resistance phenotypes of nudt7 mutants in combination with eds1 and the SA-biosynthetic mutant, sid2. We establish that EDS1 controls steps downstream of chloroplast-derived O(2)(*-) that lead to SA-assisted H(2)O(2) accumulation as part of a mechanism limiting cell death. A combination of EDS1-regulated SA-antagonized and SA-promoted processes is necessary for resistance to host-adapted pathogens and for a balanced response to photo-oxidative stress. In contrast to SA, the apoplastic ROS-producing enzyme NADPH oxidase RbohD promotes initiation of cell death during photo-oxidative stress. Thus, chloroplastic O(2)(*-) signals are processed by EDS1 to produce counter-balancing activities of SA and RbohD in the control of cell death. Our data strengthen the idea that EDS1 responds to the status of O(2)(*-) or O(2)(*-)-generated molecules to coordinate cell death and defense outputs. This activity may enable the plant to respond flexibly to different biotic and abiotic stresses in the environment.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/immunology , Arabidopsis/metabolism , DNA-Binding Proteins/metabolism , Oxidative Stress , Salicylic Acid/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Chloroplasts/metabolism , DNA-Binding Proteins/genetics , Gene Expression Profiling , Gene Expression Regulation, Plant , Hydrogen Peroxide/metabolism , Pyrophosphatases/genetics , Pyrophosphatases/metabolism , RNA, Plant/genetics , Reactive Oxygen Species/metabolism , Sequence Analysis, DNA , Stress, Physiological , Nudix Hydrolases
SELECTION OF CITATIONS
SEARCH DETAIL
...