Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 19 de 19
Filter
Add more filters










Publication year range
1.
Angew Chem Int Ed Engl ; 63(19): e202400333, 2024 May 06.
Article in English | MEDLINE | ID: mdl-38359082

ABSTRACT

We disclose the development of a Cu-catalyzed C-O coupling method utilizing a new N1,N2-diarylbenzene-1,2-diamine ligand, L8. Under optimized reaction conditions, structurally diverse aryl and heteroaryl bromides underwent efficient coupling with a variety of alcohols at room temperature using an L8-based catalyst. Notably, the L8-derived catalyst exhibited enhanced activity when compared to the L4-based system previously disclosed for C-N coupling, namely the ability to functionalize aryl bromides containing acidic functional groups. Mechanistic studies demonstrate that C-O coupling utilizing L8 ⋅ Cu involves rate-limiting alkoxide transmetallation, resulting in a mechanism of C-O bond formation that is distinct from previously described Pd-, Cu-, or Ni-based systems. This lower energy pathway leads to rapid C-O bond formation; a 7-fold increase relative to what is seen with other ligands. The results presented in this report overcome limitations in previously described C-O coupling methods and introduce a new ligand that we anticipate may be useful in other Cu-catalyzed C-heteroatom bond-forming reactions.

2.
Chem Commun (Camb) ; 59(41): 6203-6206, 2023 May 18.
Article in English | MEDLINE | ID: mdl-37128983

ABSTRACT

Interrogating the stacking of two-dimensional polymers (2DPs) as a function of chemical composition is important to leverage their properties. We explore the dependence of 2DP crystallinity and porosity on variable amounts of zwitterions contained within the pores and find that high zwitterion loadings consistently diminish 2DP materials quality. A competition between disruptive zwitterion electrostatic forces and alkyl stabilization directs the stacking order of each 2DP and demonstrates the contrasting effects of side chain composition on 2DP crystallinity and porosity.

3.
J Am Chem Soc ; 145(12): 6966-6975, 2023 Mar 29.
Article in English | MEDLINE | ID: mdl-36926889

ABSTRACT

Ullmann-type C-N coupling reactions represent an important alternative to well-established Pd-catalyzed approaches due to the differing reactivity and the lower cost of Cu. While the design of anionic Cu ligands, particularly those by Ma, has enabled the coupling of various classes of aryl halides and alkyl amines, most methods require conditions that can limit their utility on complex substrates. Herein, we disclose the development of anionic N1,N2-diarylbenzene-1,2-diamine ligands that promote the Cu-catalyzed amination of aryl bromides under mild conditions. Guided by DFT calculations, these ligands were designed to (1) increase the electron density on Cu, thereby increasing the rate of oxidative addition of aryl bromides, and (2) stabilize the active anionic CuI complex via a π-interaction. Under optimized conditions, structurally diverse aryl and heteroaryl bromides and a broad range of alkyl amine nucleophiles, including pharmaceuticals bearing multiple functional groups, were efficiently coupled at room temperature. Combined computational and experimental studies support a mechanism of C-N bond formation that follows a catalytic cycle akin to the well-explored Pd-catalyzed variants. Modification of the ligand structure to include a naphthyl residue resulted in a lower energy barrier to oxidative addition, providing a 30-fold rate increase relative to what is seen with other ligands. Collectively, these results establish a new class of anionic ligands for Cu-catalyzed C-N couplings, which we anticipate may be extended to other Cu-catalyzed C-heteroatom and C-C bond-forming reactions.

4.
J Am Chem Soc ; 145(1): 689-696, 2023 Jan 11.
Article in English | MEDLINE | ID: mdl-36574726

ABSTRACT

Molecular electronic spin qubits are promising candidates for quantum information science applications because they can be reliably produced and engineered via chemical design. Embedding electronic spin qubits within two-dimensional polymers (2DPs) offers the possibility to systematically engineer inter-qubit interactions while maintaining long coherence times, both of which are prerequisites to their technological utility. Here, we introduce electronic spin qubits into a diamagnetic 2DP by n-doping naphthalene diimide subunits with varying amounts of CoCp2 and analyze their spin densities by quantitative electronic paramagnetic resonance spectroscopy. Low spin densities (e.g., 6.0 × 1012 spins mm-3) enable lengthy spin-lattice (T1) and spin-spin relaxation (T2) times across a range of temperatures, ranging from T1 values of 164 ms at 10 K to 30.2 µs at 296 K and T2 values of 2.36 µs at 10 K to 0.49 µs at 296 K for the lowest spin density sample examined. Higher spin densities and temperatures were both found to diminish T1 times, which we attribute to detrimental cross-relaxation from spin-spin dipolar interactions and spin-phonon coupling, respectively. Higher spin densities decreased T2 times and modulated the T2 temperature dependence. We attribute these differences to the competition between hyperfine and dipolar interactions for electron spin decoherence, with the dominant interaction transitioning from the former to the latter as spin density and temperature increase. Overall, this investigation demonstrates that dispersing electronic spin qubits within layered 2DPs enables chemical control of their inter-qubit interactions and spin decoherence times.

5.
J Am Chem Soc ; 144(43): 19813-19824, 2022 Nov 02.
Article in English | MEDLINE | ID: mdl-36265086

ABSTRACT

Two-dimensional (2D) covalent organic frameworks (COFs) are composed of structurally precise, permanently porous, layered macromolecular sheets, which are traditionally synthesized as polycrystalline solids with crystalline domain lengths smaller than 100 nm. Here, we polymerize imine-linked 2D COFs as suspensions of faceted single crystals in as little as 5 min at moderate temperature and ambient pressure. Single crystals of two imine-linked 2D COFs were prepared, consisting of a rhombic 2D COF (TAPPy-PDA) and a hexagonal 2D COF (TAPB-DMPDA). The sizes of TAPPy-PDA and TAPB-DMPDA crystals were tuned from 720 nm to 4 µm and 450 nm to 20 µm in width, respectively. High-resolution transmission electron microscopy revealed that the COF crystals consist of layered, 2D polymers comprising single-crystalline domains. Continuous rotation electron diffraction resolved the unit cell and crystal structure of both COFs, which are single-crystalline in the a-b plane but disordered in the stacking c dimension. Single crystals of both COFs were incorporated into gas chromatography separation columns and exhibited unusual selective retention of cyclohexane over benzene, with single-crystalline TAPPy-PDA significantly outperforming single-crystalline TAPB-DMPDA. Polycrystalline TAPPy-PDA exhibited no separation, while polycrystalline TAPB-DMPDA exhibited poor separation and the opposite order of elution, retaining benzene more than cyclohexane, indicating the importance of improved material quality for COFs to exhibit properties that derive from their precise, crystalline structures. This work represents the first example of synthesizing imine-linked 2D COF single crystals at ambient pressure and short reaction times and demonstrates the promise of high-quality COFs for molecular separations.

6.
Chem Sci ; 13(8): 2475-2480, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35310510

ABSTRACT

Supramolecular nanotubes prepared through macrocycle assembly offer unique properties that stem from their long-range order, structural predictability, and tunable microenvironments. However, assemblies that rely on weak non-covalent interactions often have limited aspect ratios and poor mechanical integrity, which diminish their utility. Here pentagonal imine-linked macrocycles are prepared by condensing a pyridine-containing diamine and either terephthalaldehyde or 2,3,5,6-tetrafluoroterephthalaldehyde. Atomic force microscopy and synchrotron in solvo X-ray diffraction demonstrate that protonation of the pyridine groups drives assembly into high-aspect ratio nanotube assemblies. A 1 : 1 mixture of each macrocycle yielded nanotubes with enhanced crystallinity upon protonation. UV-Vis and fluorescence spectroscopy indicate that nanotubes containing both arene and perfluoroarene subunits display spectroscopic signatures of arene-perfluoroarene interactions. Touch-spun polymeric fibers containing assembled nanotubes prepared from the perhydro- or perfluorinated macrocycles exhibited Young's moduli of 1.09 and 0.49 GPa, respectively. Fibers containing nanotube assemblies reinforced by arene-perfluoroarene interactions yielded a 93% increase in the Young's modulus over the perhydro derivative, up to 2.1 GPa. These findings demonstrate that tuning the chemical composition of the monomeric macrocycles can have profound effects on the mechanical strength of the resulting assemblies. More broadly, these results will inspire future studies into tuning orthogonal non-covalent interactions between macrocycles to yield nanotubes with emergent functions and technological potential.

7.
Adv Mater ; 34(22): e2101932, 2022 Jun.
Article in English | MEDLINE | ID: mdl-34850459

ABSTRACT

2D polymers (2DPs) are promising as structurally well-defined, permanently porous, organic semiconductors. However, 2DPs are nearly always isolated as closed shell organic species with limited charge carriers, which leads to low bulk conductivities. Here, the bulk conductivity of two naphthalene diimide (NDI)-containing 2DP semiconductors is enhanced by controllably n-doping the NDI units using cobaltocene (CoCp2 ). Optical and transient microwave spectroscopy reveal that both as-prepared NDI-containing 2DPs are semiconducting with sub-2 eV optical bandgaps and photoexcited charge-carrier lifetimes of tens of nanoseconds. Following reduction with CoCp2 , both 2DPs largely retain their periodic structures and exhibit optical and electron-spin resonance spectroscopic features consistent with the presence of NDI-radical anions. While the native NDI-based 2DPs are electronically insulating, maximum bulk conductivities of >10-4  S cm-1 are achieved by substoichiometric levels of n-doping. Density functional theory calculations show that the strongest electronic couplings in these 2DPs exist in the out-of-plane (π-stacking) crystallographic directions, which indicates that cross-plane electronic transport through NDI stacks is primarily responsible for the observed electronic conductivity. Taken together, the controlled molecular doping is a useful approach to access structurally well-defined, paramagnetic, 2DP n-type semiconductors with measurable bulk electronic conductivities of interest for electronic or spintronic devices.

8.
Chem Rev ; 122(1): 442-564, 2022 01 12.
Article in English | MEDLINE | ID: mdl-34852192

ABSTRACT

Synthetic chemists have developed robust methods to synthesize discrete molecules, linear and branched polymers, and disordered cross-linked networks. However, two-dimensional polymers (2DPs) prepared from designed monomers have been long missing from these capabilities, both as objects of chemical synthesis and in nature. Recently, new polymerization strategies and characterization methods have enabled the unambiguous realization of covalently linked macromolecular sheets. Here we review 2DPs and 2D polymerization methods. Three predominant 2D polymerization strategies have emerged to date, which produce 2DPs either as monolayers or multilayer assemblies. We discuss the fundamental understanding and scope of each of these approaches, including: the bond-forming reactions used, the synthetic diversity of 2DPs prepared, their multilayer stacking behaviors, nanoscale and mesoscale structures, and macroscale morphologies. Additionally, we describe the analytical tools currently available to characterize 2DPs in their various isolated forms. Finally, we review emergent 2DP properties and the potential applications of planar macromolecules. Throughout, we highlight achievements in 2D polymerization and identify opportunities for continued study.


Subject(s)
Polymers , Macromolecular Substances/chemistry , Polymerization , Polymers/chemistry
9.
J Am Chem Soc ; 143(42): 17655-17665, 2021 Oct 27.
Article in English | MEDLINE | ID: mdl-34648256

ABSTRACT

Supramolecular polymers are compelling platforms for the design of stimuli-responsive materials with emergent functions. Here, we report the assembly of an amphiphilic nanotube for Li-ion conduction that exhibits high ionic conductivity, mechanical integrity, electrochemical stability, and solution processability. Imine condensation of a pyridine-containing diamine with a triethylene glycol functionalized isophthalaldehyde yields pore-functionalized macrocycles. Atomic force microscopy, scanning electron microscopy, and in solvo X-ray diffraction reveal that macrocycle protonation during their mild synthesis drives assembly into high-aspect ratio (>103) nanotubes with three interior triethylene glycol groups. Electrochemical impedance spectroscopy demonstrates that lithiated nanotubes are efficient Li+ conductors, with an activation energy of 0.42 eV and a peak room temperature conductivity of 3.91 ± 0.38 × 10-5 S cm-1. 7Li NMR and Raman spectroscopy show that lithiation occurs exclusively within the nanotube interior and implicates the glycol groups in facilitating efficient Li+ transduction. Linear sweep voltammetry and galvanostatic lithium plating-stripping tests reveal that this nanotube-based electrolyte is stable over a wide potential range and supports long-term cyclability. These findings demonstrate how the coupling of synthetic design and supramolecular structural control can yield high-performance ionic transporters that are amenable to device-relevant fabrication, as well as the technological potential of chemically designed self-assembled nanotubes.

10.
J Am Chem Soc ; 143(21): 8145-8153, 2021 06 02.
Article in English | MEDLINE | ID: mdl-34003631

ABSTRACT

Macrocycles that assemble into nanotubes exhibit emergent properties stemming from their low dimensionality, structural regularity, and distinct interior environments. We report a versatile strategy to synthesize diverse nanotube structures in a single, efficient reaction by using a conserved building block bearing a pyridine ring. Imine condensation of a 2,4,6-triphenylpyridine-based diamine with various aromatic dialdehydes yields chemically distinct pentagonal [5 + 5], hexagonal [3 + 3], and diamond-shaped [2 + 2] macrocycles depending on the substitution pattern of the aromatic dialdehyde monomer. Atomic force microscopy and in solvo X-ray diffraction demonstrate that protonation of the macrocycles under the mild conditions used for their synthesis drives assembly into high-aspect ratio nanotubes. Each of the pyridine-containing nanotube assemblies exhibited measurable proton conductivity by electrochemical impedance spectroscopy, with values as high as 10-3 S m-1 (90% R.H., 25 °C) that we attribute to differences in their internal pore sizes. This synthetic strategy represents a general method to access robust nanotube assemblies from a universal pyridine-containing monomer, which will enable systematic investigations of their emergent properties.


Subject(s)
Macrocyclic Compounds/chemical synthesis , Nanotubes/chemistry , Protons , Cyclization , Macrocyclic Compounds/chemistry , Molecular Structure
11.
J Am Chem Soc ; 143(2): 649-656, 2021 01 20.
Article in English | MEDLINE | ID: mdl-33410702

ABSTRACT

Two-dimensional covalent organic frameworks (2D COFs) are layered, structurally regular, and permanently porous macromolecules. When reactive groups are embedded into a COF structure, subsequent chemical reactions can be performed following polymerization. As such, a postsynthetic modification (PSM) strategy provides diverse materials from a single set of COF monomers and polymerization protocols. Here, we report the synthesis of an asymmetric dibenzocyclooctyne-containing imine-linked 2D COF, which readily undergoes strain-promoted azide-alkyne cycloaddition (SPAAC) reactions without catalyst under mild and dilute conditions. This approach was used to quantitatively decorate the COF lattice with alkyl chains and amines, all without the need for exogenous species. Functionalization may result in spontaneous delamination of bulk COF materials into solution-stable sheets, demonstrating the utility of this technique. As such, this platform is useful for postsynthetic functionalization with sensitive chemical functionalities that are not amenable to direct polymerization or existing PSM strategies.

12.
Faraday Discuss ; 225: 226-240, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33201970

ABSTRACT

Two-dimensional covalent organic frameworks (2D COFs) are synthetically diverse, layered macromolecules. Their covalent lattices are thought to confer high thermal stability, which is typically evaluated with thermogravimetric analysis (TGA). However, TGA measures the temperature at which volatile degradation products are formed and is insensitive to changes of the periodic structure of the COF. Here, we study the thermal stability of ten 2D COFs using a combination of variable-temperature X-ray diffraction, TGA, diffuse reflectance infrared spectroscopy, and density functional theory calculations. We find that 2D COFs undergo a general two-step thermal degradation process. At the first degradation temperature, 2D COFs lose their crystallinity without chemical degradation. Then, at higher temperatures, they chemically degrade into volatile byproducts. Several trends emerge from this exploration of 2D COF stability. Boronate ester-linked COFs are generally more thermally stable than comparable imine-linked COFs. Smaller crystalline lattices are more robust to thermal degradation than chemically similar larger lattices. Finally, pore-functionalized COFs degrade at significantly lower temperatures than their unfunctionalized analogues. These trends offer design criteria for thermally resilient 2D COF materials. These findings will inform and encourage a broader exploration of mechanical deformation in 2D networks, providing a necessary step towards their practical use.

13.
J Am Chem Soc ; 142(43): 18637-18644, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33058663

ABSTRACT

A more robust mechanistic understanding of imine-linked two-dimensional covalent organic frameworks (2D COFs) is needed to improve their crystalline domain sizes and to control their morphology, both of which are necessary to fully realize their application potential. Here, we present evidence that 2D imine-linked COFs rapidly polymerize as crystalline sheets that subsequently reorganize to form stacked structures. Primarily, this study focuses on the first few minutes of 1,3,5-tris(4-aminophenyl)benzene and terephthaldehyde polymerization, which yields an imine-linked 2D COF. In situ X-ray diffraction and thorough characterization of solids obtained using gentler isolation and activation methods than have typically been used in the literature indicate that periodic imine-linked 2D structures form within 60 s, which then form more ordered stacked structures over the course of several hours. This stacking process imparts improved stability toward the isolation process relative to that of the early stage materials, which likely obfuscated previous mechanistic conclusions regarding 2D polymerization that were based on products isolated using harsh activation methods. This revised mechanistic picture has useful implications; the 2D COF layers isolated at very short reaction times are easily exfoliated, as observed in this work using high-resolution transmission electron microscopy and atomic force microscopy. These results suggest improved control of imine-linked 2D COF formation can be obtained through manipulation of the polymerization conditions and interlayer interactions. Qualitatively similar results were obtained for analogous materials obtained from 2,5-di(alkoxy)terephthaldehyde derivatives, except for the COF with the longest alkoxy chains examined (OC12H25), which, although shown by in situ X-ray diffraction to be highly crystalline in the reaction mixture, is much less crystalline when isolated than the other COFs examined, likely due to the more severe steric impact of the dodecyloxy functionality on the stacking process.

14.
Adv Mater ; 32(42): e2004205, 2020 Oct.
Article in English | MEDLINE | ID: mdl-32939866

ABSTRACT

2D covalent organic frameworks (2D COFs) are a unique materials platform that combines covalent connectivity, structural regularity, and molecularly precise porosity. However, 2D COFs typically form insoluble aggregates, thus limiting their processing via additive manufacturing techniques. In this work, colloidal suspensions of boronate-ester-linked 2D COFs are used as a spray-coating ink to produce large-area 2D COF thin films. This method is synthetically general, with five different 2D COFs prepared as colloidal inks and subsequently spray-coated onto a diverse range of substrates. Moreover, this approach enables the deposition of multiple 2D COF materials simultaneously, which is not possible by polymerizing COFs on substrates directly. When combined with stencil masks, spray-coated 2D COFs are rapidly deposited as thin films larger than 200 cm2 with line resolutions below 50 µm. To demonstrate that this deposition scheme preserves the desirable attributes of 2D COFs, spray-coated 2D COF thin films are incorporated as the active material in acoustic sensors. These 2D-COF-based sensors have a 10 ppb limit-of-quantification for trimethylamine, which places them among the most sensitive sensors for meat and seafood spoilage. Overall, this work establishes a scalable additive manufacturing technique that enables the integration of 2D COFs into thin-film device architectures.

15.
Chem Sci ; 11(7): 1957-1963, 2020 Jan 09.
Article in English | MEDLINE | ID: mdl-34123290

ABSTRACT

Supramolecular polymerization of imine-linked macrocycles has been coupled to dynamic imine bond exchange within a series of macrocycles and oligomers. In this way, macrocycle synthesis is driven by supramolecular assembly, either into small aggregates supported by π-π interactions, or high-aspect ratio nanotubes stabilized primarily by electrostatic and solvophobic interactions. For the latter, supramolecular polymerization into nanotubes restricts imine exchange, thereby conferring chemical stability to the assemblies and their constituent macrocycles. Competition in the formation and component exchange among macrocycles favored pyridine-2,6-diimine-linked species due to their rapid synthesis, thermodynamic stability, and assembly into high-aspect ratio nanotubes under the reaction conditions. In addition, the pyridine-containing nanotubes inhibit the formation of similar macrocycles containing benzene-1,3-diimine-linkages, presumably by disrupting their assembly and templation. Finally, we exploit rapid imine exchange within weak, low-aspect ratio macrocycle aggregates to carry out monomer exchange reactions to macrocycles bearing pyridine moieties. Once a pyridine-containing dialdehyde has exchanged into a macrocycle, the macrocycle becomes capable of nanotube formation, which dramatically slows further imine exchange. This kinetic trap provides chemically diverse macrocycles that are not attainable by direct synthetic methods. Together these findings provide new insights into coupling supramolecular polymerization and dynamic covalent bond-forming processes and leverages this insight to target asymmetric nanotubes. We envision these findings spurring further research efforts in the synthesis of nanostructures with designed and emergent properties.

16.
J Am Chem Soc ; 142(3): 1367-1374, 2020 Jan 22.
Article in English | MEDLINE | ID: mdl-31867961

ABSTRACT

Homogeneous two-dimensional (2D) polymerization is a poorly understood process in which topologically planar monomers react to form planar macromolecules, often termed 2D covalent organic frameworks (COFs). While these COFs have traditionally been limited to weakly crystalline aggregated powders, they were recently grown as micron-sized single crystals by temporally resolving the growth and nucleation processes. Here, we present a quantitative analysis of the nucleation and growth rates of 2D COFs via kinetic Monte Carlo (KMC) simulations using COF-5 as an example, which show that nucleation and growth have second-order and first-order dependences on monomer concentration, respectively. The computational results were confirmed experimentally by systematic measurements of COF nucleation and growth rates performed via in situ X-ray scattering, which validated the respective monomer concentration dependencies of the nucleation and elongation processes. A major consequence is that there exists a threshold monomer concentration below which growth dominates over nucleation. Our computational and experimental findings rationalize recent empirical observations that, in the formation of 2D COF single crystals, growth dominates over nucleation when monomers are added slowly, so as to limit their concentrations. This mechanistic understanding of the nucleation and growth processes will inform the rational control of polymerization in two dimensions and ultimately enable access to high-quality samples of designed two-dimensional polymers.

17.
ACS Cent Sci ; 5(11): 1892-1899, 2019 Nov 27.
Article in English | MEDLINE | ID: mdl-31807691

ABSTRACT

Two-dimensional covalent organic frameworks (2D COFs) are composed of structurally precise, permanently porous, layered polymer sheets. 2D COFs have traditionally been synthesized as polycrystalline aggregates with small crystalline domains. Only recently have a small number of 2D COFs been obtained as single crystals, which were prepared by a seeded growth approach via the slow introduction of monomers, which favored particle growth over nucleation. However, these procedures are slow and operationally difficult, making it desirable to develop polymerization methods that do not require the continuous addition of reactants over days or weeks. Here, we achieve the rapid growth of boronate ester-linked COFs by chemically suppressing nucleation via addition of an excess of a monofunctional competitor, 4-tert-butylcatechol (TCAT), into the polymerization. In situ X-ray scattering measurements show that TCAT suppresses colloid nucleation, which enables seeded growth polymerizations in the presence of high monomer concentrations. Kinetic Monte Carlo simulations reveal that TCAT limits oligomers to sizes below the critical nucleus size and that in-plane expansion is restricted compared to out-of-plane oriented attachment of oligomers. The simulations are consistent with transmission electron micrographs, which show that the particles grow predominantly in the stacking direction. This mechanistic insight into the role of the modulators in 2D polymerizations enables the size and aspect ratio of COF colloids to be controlled under operationally simple conditions. This chemically controlled growth strategy will accelerate the discovery and exploration of COF materials and their emergent properties.

18.
Angew Chem Int Ed Engl ; 58(41): 14708-14714, 2019 10 07.
Article in English | MEDLINE | ID: mdl-31407425

ABSTRACT

Nanotubes assembled from macrocyclic precursors offer a unique combination of low dimensionality, structural rigidity, and distinct interior and exterior microenvironments. Usually the weak stacking energies of macrocycles limit the length and mechanical strength of the resultant nanotubes. Imine-linked macrocycles were recently found to assemble into high-aspect ratio (>103 ), lyotropic nanotubes in the presence of excess acid. Yet these harsh conditions are incompatible with many functional groups and processing methods, and lower acid loadings instead catalyze macrocycle degradation. Here we report pyridine-2,6-diimine-linked macrocycles that assemble into high-aspect ratio nanotubes in the presence of less than 1 equiv of CF3 CO2 H per macrocycle. Analysis by gel permeation chromatography and fluorescence spectroscopy revealed a cooperative self-assembly mechanism. The low acid concentrations needed to induce assembly enabled nanofibers to be obtained by touch-spinning, which exhibit higher Young's moduli (1.33 GPa) than many synthetic polymers and biological filaments. These findings represent a breakthrough in the design of inverse chromonic liquid crystals, as assembly under such mild conditions will enable the design of structurally diverse and mechanically robust nanotubes from synthetically accessible macrocycles.

19.
J Endourol ; 16(1): 51-6, 2002 Feb.
Article in English | MEDLINE | ID: mdl-11890452

ABSTRACT

PURPOSE: To evaluate the cost effectiveness of minimally invasive therapy relative to medical (alpha-blocker) therapy and transurethral resection (TURP) for patients with moderate to severe symptoms of benign prostatic hyperplasia (BPH). METHODS: We constructed a decision-analytic Markov model for a hypothetical cohort of 65-year-old men with moderate to severe BPH symptoms. Microwave thermotherapy was selected to represent minimally invasive treatment. Cost-effectiveness analysis was performed with 25 health states using the 3 treatments, 5 short-term clinical events, and 17 possible long-term outcomes. Each health state had an associated cost and utility. Quality of life (QoL) and utility estimates were obtained by interviewing 13 men with BPH symptoms using the standard gamble reference methods. Patients were classified as risk averse (RA) or non-risk averse (NRA) on the basis of their attitudes to risk. We calculated the incremental cost effectiveness of microwave thermotherapy relative to medical therapy and TURP over 5 years after treatment initiation. Event probabilities were obtained from the literature, a consensus panel, and published randomized clinical trials. RESULTS AND CONCLUSIONS: The utility values generated were internally consistent and externally valid for a hypothetical cohort of 10,000 RA patients. Microwave thermotherapy was preferred by the NRA group, while medical therapy was preferred by the RA group. Surgery was least preferred by both groups. Microwave thermotherapy had a small incremental cost but improved QoL in comparison with medical therapy. Microwave thermotherapy had a higher utility and lower cost than TURP and thus was dominant over TURP. This analytical method can be applied to evaluate the cost effectiveness of any BPH therapy.


Subject(s)
Minimally Invasive Surgical Procedures/economics , Prostatic Hyperplasia/therapy , Transurethral Resection of Prostate/economics , Aged , Cost-Benefit Analysis , Humans , Hyperthermia, Induced , Male , Models, Economic , Prostatic Hyperplasia/economics , Quality of Life , Risk Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...