Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nat Commun ; 14(1): 1456, 2023 03 16.
Article in English | MEDLINE | ID: mdl-36928642

ABSTRACT

Cryptosporidium infects gastrointestinal epithelium and is a leading cause of infectious diarrhea and diarrheal-related death in children worldwide. There are no vaccines and no fully effective therapy available for the infection. Type II and III interferon (IFN) responses are important determinants of susceptibility to infection but the role for type I IFN response remains obscure. Cryptosporidium parvum virus 1 (CSpV1) is a double-stranded RNA (dsRNA) virus harbored by Cryptosporidium spp. Here we show that intestinal epithelial conditional Ifnar1-/- mice (deficient in type I IFN receptor) are resistant to C. parvum infection. CSpV1-dsRNAs are delivered into host cells and trigger type I IFN response in infected cells. Whereas C. parvum infection attenuates epithelial response to IFN-γ, loss of type I IFN signaling or inhibition of CSpV1-dsRNA delivery can restore IFN-γ-mediated protective response. Our findings demonstrate that type I IFN signaling in intestinal epithelial cells is detrimental to intestinal anti-C. parvum defense and Cryptosporidium uses CSpV1 to activate type I IFN signaling to evade epithelial antiparasitic response.


Subject(s)
Cryptosporidiosis , Cryptosporidium parvum , Host-Parasite Interactions , Interferon Type I , Animals , Mice , Antiparasitic Agents/metabolism , Antiparasitic Agents/pharmacology , Cryptosporidiosis/etiology , Cryptosporidiosis/parasitology , Cryptosporidiosis/virology , Cryptosporidium/pathogenicity , Cryptosporidium/virology , Cryptosporidium parvum/pathogenicity , Cryptosporidium parvum/virology , Host-Parasite Interactions/genetics , Interferon Type I/metabolism , Interferon Type I/pharmacology , Double Stranded RNA Viruses/metabolism
2.
mBio ; 12(5): e0212721, 2021 10 26.
Article in English | MEDLINE | ID: mdl-34488445

ABSTRACT

Interferon (IFN) signaling is key to mucosal immunity in the gastrointestinal tract, but cellular regulatory elements that determine interferon gamma (IFN-γ)-mediated antimicrobial defense in intestinal epithelial cells are not fully understood. We report here that a long noncoding RNA (lncRNA), GenBank accession no. XR_001779380, was increased in abundance in murine intestinal epithelial cells following infection by Cryptosporidium, an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children. Expression of XR_001779380 in infected intestinal epithelial cells was triggered by TLR4/NF-κB/Cdc42 signaling and epithelial-specific transcription factor Elf3. XR_001779380 primed epithelial cells for IFN-γ-mediated gene transcription through facilitating Stat1/Swi/Snf-associated chromatin remodeling. Interactions between XR_001779380 and Prdm1, which is expressed in neonatal but not adult intestinal epithelium, attenuated Stat1/Swi/Snf-associated chromatin remodeling induced by IFN-γ, contributing to suppression of IFN-γ-mediated epithelial defense in neonatal intestine. Our data demonstrate that XR_001779380 is an important regulator in IFN-γ-mediated gene transcription and age-associated intestinal epithelial antimicrobial defense. IMPORTANCE Epithelial cells along the mucosal surface provide the front line of defense against luminal pathogen infection in the gastrointestinal tract. These epithelial cells represent an integral component of a highly regulated communication network that can transmit essential signals to cells in the underlying intestinal mucosa that, in turn, serve as targets of mucosal immune mediators. LncRNAs are recently identified long noncoding transcripts that can regulate gene transcription through their interactions with other effect molecules. In this study, we demonstrated that lncRNA XR_001779380 was upregulated in murine intestinal epithelial cells following infection by a mucosal protozoan parasite Cryptosporidium. Expression of XR_001779380 in infected cells primed host epithelial cells for IFN-γ-mediated gene transcription, relevant to age-dependent intestinal antimicrobial defense. Our data provide new mechanistic insights into how intestinal epithelial cells orchestrate intestinal mucosal defense against microbial infection.


Subject(s)
Cryptosporidiosis/immunology , Cryptosporidium parvum/physiology , Interferon-gamma/immunology , Intestinal Mucosa/immunology , RNA, Long Noncoding/immunology , Age Factors , Animals , Cryptosporidiosis/genetics , Cryptosporidiosis/parasitology , Cryptosporidium parvum/genetics , Epithelial Cells/immunology , Epithelial Cells/parasitology , Humans , Immunity, Mucosal , Interferon-gamma/genetics , Intestinal Mucosa/parasitology , Mice , NF-kappa B/genetics , NF-kappa B/immunology , RNA, Long Noncoding/genetics , Toll-Like Receptor 4/genetics , Toll-Like Receptor 4/immunology
3.
PLoS Pathog ; 17(1): e1009241, 2021 01.
Article in English | MEDLINE | ID: mdl-33481946

ABSTRACT

The gastrointestinal epithelium guides the immune system to differentiate between commensal and pathogenic microbiota, which relies on intimate links with the type I IFN signal pathway. Epithelial cells along the epithelium provide the front line of host defense against pathogen infection in the gastrointestinal tract. Increasing evidence supports the regulatory potential of long noncoding RNAs (lncRNAs) in immune defense but their role in regulating intestinal epithelial antimicrobial responses is still unclear. Cryptosporidium, a protozoan parasite that infects intestinal epithelial cells, is an important opportunistic pathogen in AIDS patients and a common cause of diarrhea in young children in developing countries. Recent advances in Cryptosporidium research have revealed a strong type I IFN response in infected intestinal epithelial cells. We previously identified a panel of host cell lncRNAs that are upregulated in murine intestinal epithelial cells following microbial challenge. One of these lncRNAs, NR_033736, is upregulated in intestinal epithelial cells following Cryptosporidium infection and displays a significant suppressive effect on type I IFN-controlled gene transcription in infected host cells. NR_033736 can be assembled into the ISGF3 complex and suppresses type I IFN-mediated gene transcription. Interestingly, upregulation of NR_033736 itself is triggered by the type I IFN signaling. Moreover, NR_033736 modulates epithelial anti-Cryptosporidium defense. Our data suggest that upregulation of NR_033736 provides negative feedback regulation of type I IFN signaling through suppression of type I IFN-controlled gene transcription, and consequently, contributing to fine-tuning of epithelial innate defense against microbial infection.


Subject(s)
Cryptosporidiosis/immunology , Cryptosporidium/immunology , Interferon Type I/metabolism , RNA, Long Noncoding/genetics , Signal Transduction , Animals , Animals, Newborn , Cryptosporidiosis/parasitology , Diarrhea/immunology , Diarrhea/parasitology , Epithelial Cells/parasitology , Gastrointestinal Tract/immunology , Gastrointestinal Tract/parasitology , Humans , Intestinal Mucosa/immunology , Intestinal Mucosa/parasitology , Intestines/parasitology , Mice , Transcription, Genetic , Up-Regulation
4.
J Immunol ; 201(12): 3630-3640, 2018 12 15.
Article in English | MEDLINE | ID: mdl-30446564

ABSTRACT

Cryptosporidium is an important opportunistic intestinal pathogen for immunocompromised individuals and a common cause of diarrhea in young children in developing countries. Gastrointestinal epithelial cells play a central role in activating and orchestrating host immune responses against Cryptosporidium infection, but underlying molecular mechanisms are not fully understood. We report in this paper that C. parvum infection causes significant alterations in long noncoding RNA (lncRNA) expression profiles in murine intestinal epithelial cells. Transcription of a panel of lncRNA genes, including NR_045064, in infected cells is controlled by the NF-κB signaling. Functionally, inhibition of NR_045064 induction increases parasite burden in intestinal epithelial cells. Induction of NR_045064 enhances the transcription of selected defense genes in host cells following C. parvum infection. Epigenetic histone modifications are involved in NR_045064-mediated transcription of associated defense genes in infected host cells. Moreover, the p300/MLL-associated chromatin remodeling is involved in NR_045064-mediated transcription of associated defense genes in intestinal epithelial cells following C. parvum infection. Expression of NR_045064 and associated genes is also identified in intestinal epithelium in C57BL/6J mice following phosphorothioate oligodeoxynucleotide or LPS stimulation. Our data demonstrate that lncRNAs, such as NR_045064, play a role in regulating epithelial defense against microbial infection.


Subject(s)
Cryptosporidiosis/genetics , Cryptosporidium parvum/physiology , Intestinal Mucosa/physiology , RNA, Long Noncoding/genetics , Animals , Anti-Infective Agents , Cell Line , Cryptosporidiosis/immunology , Disease Models, Animal , Gene Expression Regulation , Humans , Immunity/genetics , Lipopolysaccharides/immunology , Mice , Mice, Inbred C57BL , NF-kappa B/metabolism
5.
J Infect Dis ; 218(8): 1336-1347, 2018 09 08.
Article in English | MEDLINE | ID: mdl-30052999

ABSTRACT

Intestinal infection by Cryptosporidium is known to cause epithelial cell migration disorder but the underlying mechanisms are unclear. Previous studies demonstrated that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected epithelial cells. Using multiple models of intestinal cryptosporidiosis, we report here that C. parvum infection induces expression and release of the dickkopf protein 1 (Dkk1) from intestinal epithelial cells. Delivery of parasite Cdg7_FLc_1030 RNA to intestinal epithelial cells triggers transactivation of host Dkk1 gene during C. parvum infection. Release of Dkk1 is involved in C. parvum-induced inhibition of cell migration of epithelial cells, including noninfected bystander cells. Moreover, Dkk1-mediated suppression of host cell migration during C. parvum infection involves inhibition of Cdc42/Par6 signaling. Our data support the hypothesis that attenuation of intestinal epithelial cell migration during Cryptosporidium infection involves parasite Cdg7_FLc_1030 RNA-mediated induction and release of Dkk1 from infected cells.


Subject(s)
Cryptosporidium parvum/metabolism , Epithelial Cells/parasitology , Intercellular Signaling Peptides and Proteins/metabolism , Intestinal Mucosa/cytology , RNA, Protozoan/pharmacology , Animals , Cell Line , Cryptosporidium parvum/genetics , Epithelial Cells/metabolism , Gene Expression Regulation/drug effects , Gene Expression Regulation/immunology , Humans , Intercellular Signaling Peptides and Proteins/genetics , Mice , Transcriptional Activation
6.
Int J Parasitol ; 48(6): 423-431, 2018 05.
Article in English | MEDLINE | ID: mdl-29438669

ABSTRACT

Intestinal infection by Cryptosporidium parvum causes significant alterations in the gene expression profile in host epithelial cells. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected host cells and may modulate host gene transcription. Using in vitro models of human intestinal cryptosporidiosis, we report here that trans-suppression of the cadherin 3 (CDH3) and lysyl oxidase like 4 (LOXL4) genes in human intestinal epithelial cells following C. parvum infection involves host delivery of the Cdg7_FLc_1000 RNA, a C. parvum RNA that has been previously demonstrated to be delivered into the nuclei of infected host cells. Downregulation of CDH3 and LOXL4 genes was detected in host epithelial cells following C. parvum infection or in cells expressing the parasite Cdg7_FLc_1000 RNA. Knockdown of Cdg7_FLc_1000 attenuated the trans-suppression of CDH3 and LOXL4 genes in host cells induced by infection. Interestingly, Cdg7_FLc_1000 was detected to be recruited to the promoter regions of both CDH3 and LOXL4 gene loci in host cells following C. parvum infection. Host delivery of Cdg7_FLc_1000 promoted the PH domain zinc finger protein 1 (PRDM1)-mediated H3K9 methylation associated with trans-suppression in the CDH3 gene locus, but not the LOXL4 gene. Therefore, our data suggest that host delivery of Cdg7_FLc_1000 causes CDH3 trans-suppression in human intestinal epithelial cells following C. parvum infection through PRDM1-mediated H3K9 methylation in the CDH3 gene locus, whereas Cdg7_FLc_1000 induces trans-suppression of the host LOXL4 gene through H3K9/H3K27 methylation-independent mechanisms.


Subject(s)
Active Transport, Cell Nucleus/physiology , Amino Acid Oxidoreductases/metabolism , Cadherins/metabolism , Cryptosporidium parvum/physiology , Protozoan Proteins/pharmacology , RNA, Protozoan/metabolism , Amino Acid Oxidoreductases/genetics , Cadherins/genetics , Cell Line , Cryptosporidium parvum/genetics , Down-Regulation , Epithelial Cells/metabolism , Epithelial Cells/parasitology , Gene Knockdown Techniques , Gene Silencing , Humans , Promoter Regions, Genetic , Protein Processing, Post-Translational , Protein-Lysine 6-Oxidase , Protozoan Proteins/metabolism
7.
J Infect Dis ; 217(1): 122-133, 2017 12 27.
Article in English | MEDLINE | ID: mdl-28961856

ABSTRACT

Intestinal infection by Cryptosporidium parvum causes inhibition of epithelial turnover, but underlying mechanisms are unclear. Previous studies demonstrate that a panel of parasite RNA transcripts of low protein-coding potential are delivered into infected epithelial cells. Using in vitro and in vivo models of intestinal cryptosporidiosis, we report here that host delivery of parasite Cdg7_FLc_1000 RNA results in inhibition of epithelial cell migration through suppression of the gene encoding sphingomyelinase 3 (SMPD3). Delivery of Cdg7_FLc_1000 into infected cells promotes the histone methyltransferase G9a-mediated H3K9 methylation in the SMPD3 locus. The DNA-binding transcriptional repressor, PR domain zinc finger protein 1, is required for the assembly of Cdg7_FLc_1000 into the G9a complex and associated with the enrichment of H3K9 methylation at the gene locus. Pathologically, nuclear transfer of Cryptosporidium parvum Cdg7_FLc_1000 RNA is involved in the attenuation of intestinal epithelial cell migration via trans-suppression of host cell SMPD3.


Subject(s)
Cell Movement , Cryptosporidiosis/pathology , Cryptosporidium parvum/pathogenicity , Down-Regulation , Epithelial Cells/physiology , RNA, Protozoan/metabolism , Sphingomyelin Phosphodiesterase/biosynthesis , Animals , Cell Line , Disease Models, Animal , Epigenesis, Genetic , Histone-Lysine N-Methyltransferase/metabolism , Histones/metabolism , Humans , Intestinal Diseases/pathology , Methylation , Mice , Protein Processing, Post-Translational
8.
Cell Microbiol ; 19(11)2017 11.
Article in English | MEDLINE | ID: mdl-28655069

ABSTRACT

Cryptosporidial infection causes dysregulated transcription of host genes key to intestinal epithelial homeostasis, but the underlying mechanisms remain obscure. Previous studies demonstrate that several Cryptosporidium parvum (C. parvum) RNA transcripts are selectively delivered into epithelial cells during host cell invasion and may modulate gene transcription in infected cells. We report here that C. parvum infection suppresses the transcription of LRP5, SLC7A8, and IL33 genes in infected intestinal epithelium. Trans-suppression of these genes in infected host cells is associated with promoter enrichment of suppressive epigenetic markers (i.e., H3K9me3). Cdg7_FLc_0990, a C. parvum RNA that has previously demonstrated to be delivered into the nuclei of infected epithelial cells, is recruited to the promoter regions of LRP5, SLC7A8, and IL33 genes. Cdg7_FLc_0990 appears to be recruited to their promoter regions together with G9a, a histone methyltransferase for H3K9 methylation. The PR domain zinc finger protein 1, a G9a-interacting protein, is required for the assembly of Cdg7_FLc_0990 to the G9a complex and gene-specific enrichment of H3K9 methylation. Our data demonstrate that cryptosporidial infection induces epigenetic histone methylations in infected cells through nuclear transfer of parasite Cdg7_Flc_0990 RNA transcript, resulting in transcriptional suppression of the LRP5, SLC7A8, and IL33 genes.


Subject(s)
Amino Acid Transport System y+/biosynthesis , Cryptosporidium parvum/genetics , Fusion Regulatory Protein 1, Light Chains/biosynthesis , Interleukin-33/biosynthesis , Intestinal Mucosa/parasitology , Low Density Lipoprotein Receptor-Related Protein-5/biosynthesis , Transcription, Genetic/genetics , Amino Acid Transport System y+/genetics , Animals , Cell Line , Cryptosporidiosis/parasitology , Cryptosporidiosis/pathology , Cryptosporidium parvum/pathogenicity , Epigenesis, Genetic , Epithelial Cells/parasitology , Fusion Regulatory Protein 1, Light Chains/genetics , HSP72 Heat-Shock Proteins/genetics , Histocompatibility Antigens/metabolism , Histone-Lysine N-Methyltransferase/metabolism , Humans , Interleukin-33/genetics , Low Density Lipoprotein Receptor-Related Protein-5/genetics , Methylation , Mice , Positive Regulatory Domain I-Binding Factor 1/genetics , Promoter Regions, Genetic/genetics , RNA Interference , RNA, Protozoan/genetics , RNA, Small Interfering/genetics
9.
J Infect Dis ; 215(4): 636-643, 2017 02 15.
Article in English | MEDLINE | ID: mdl-28007919

ABSTRACT

Cryptosporidium parvum is an important opportunistic parasite pathogen for immunocompromised individuals and a common cause of diarrhea in young children. Previous studies have identified a panel of RNA transcripts of very low protein-coding potential in C. parvum. Using an in vitro model of human intestinal cryptosporidiosis, we report here that some of these C. parvum RNA transcripts were selectively delivered into the nuclei of host epithelial cells during C. parvum infection. Nuclear delivery of several such parasitic RNAs, including Cdg7_FLc_0990, involved heat-shock protein 70-mediated nuclear importing mechanism. Overexpression of Cdg7_FLc_0990 in intestinal epithelial cells resulted in significant changes in expression levels of specific genes, with significant overlapping with alterations in gene expression profile detected in host cells after C. parvum infection. Our data demonstrate that C. parvum transcripts of low protein-coding potential are selectively delivered into epithelial cells during infection and may modulate gene transcription in infected host cells.


Subject(s)
Cryptosporidiosis/genetics , Epithelial Cells/parasitology , Host-Pathogen Interactions/genetics , RNA, Protozoan/genetics , Transcription, Genetic , Cell Line , Cryptosporidium parvum/pathogenicity , Epithelial Cells/metabolism , HSP70 Heat-Shock Proteins/genetics , HSP70 Heat-Shock Proteins/metabolism , Humans , Intestinal Mucosa/metabolism , Intestines/cytology , Intestines/parasitology , Transcriptome
10.
J Immunol ; 196(6): 2799-2808, 2016 Mar 15.
Article in English | MEDLINE | ID: mdl-26880762

ABSTRACT

Long intergenic noncoding RNAs (lincRNAs) are long noncoding transcripts (>200 nt) from the intergenic regions of annotated protein-coding genes. One of the most highly induced lincRNAs in macrophages upon TLR ligation is lincRNA-Cox2, which was recently shown to mediate the activation and repression of distinct classes of immune genes in innate immune cells. We report that lincRNA-Cox2, located at chromosome 1 proximal to the PG-endoperoxide synthase 2 (Ptgs2/Cox2) gene, is an early-primary inflammatory gene controlled by NF-κB signaling in murine macrophages. Functionally, lincRNA-Cox2 is required for the transcription of NF-κB-regulated late-primary inflammatory response genes stimulated by bacterial LPS. Specifically, lincRNA-Cox2 is assembled into the switch/sucrose nonfermentable (SWI/SNF) complex in cells after LPS stimulation. This resulting lincRNA-Cox2/SWI/SNF complex can modulate the assembly of NF-κB subunits to the SWI/SNF complex, and ultimately, SWI/SNF-associated chromatin remodeling and transactivation of the late-primary inflammatory-response genes in macrophages in response to microbial challenge. Therefore, our data indicate a new regulatory role for NF-κB-induced lincRNA-Cox2 as a coactivator of NF-κB for the transcription of late-primary response genes in innate immune cells through modulation of epigenetic chromatin remodeling.


Subject(s)
Chromosomal Proteins, Non-Histone/metabolism , Inflammation/immunology , Macrophages, Peritoneal/physiology , Microglia/physiology , RNA, Long Noncoding/metabolism , Transcription Factors/metabolism , Animals , Cell Line , Chromatin Assembly and Disassembly , Chromosomes, Human, Pair 1/genetics , Cyclooxygenase 2/genetics , Humans , Immunity, Innate/genetics , Lipopolysaccharides/immunology , Male , Mice , Mice, Inbred C57BL , Microglia/pathology , NF-kappa B/genetics , NF-kappa B/metabolism , RNA, Long Noncoding/genetics , RNA, Small Interfering/genetics , Transcriptional Activation/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...