Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
Mol Imaging Biol ; 25(5): 911-922, 2023 10.
Article in English | MEDLINE | ID: mdl-37351769

ABSTRACT

PURPOSE: Reliable and rapid identification of tumor in the margins of breast specimens during breast-conserving surgery to reduce repeat surgery rates is an active area of investigation. Dual-stain difference imaging (DDSI) is one of many approaches under evaluation for this application. This technique aims to topically apply fluorescent stain pairs (one targeted to a receptor-of-interest and the other a spectrally distinct isotype), image both stains, and compute a normalized difference image between the two channels. Prior evaluation and optimization in a variety of preclinical models produced encouraging diagnostic performance. Herein, we report on a pilot clinical study which evaluated HER2-targeted DDSI on 11 human breast specimens. PROCEDURES: Gross sections from 11 freshly excised mastectomy specimens were processed using a HER2-receptor-targeted DDSI protocol shortly after resection. After staining with the dual-probe protocol, specimens were imaged on a fluorescence scanner, followed by tissue fixation for hematoxylin and eosin and anti-HER2 immunohistochemical staining. Receiver operator characteristic curves and area under the curve (AUC) analysis were used to assess diagnostic performance of the resulting images. Performance values were also compared to expression level determined from IHC staining. RESULTS: Eight of the 11 specimens presented with distinguishable invasive ductal carcinoma and/or were not affected by an imaging artifact. In these specimens, the DDSI technique provided an AUC = 0.90 ± 0.07 for tumor-to-adipose tissue and 0.81 ± 0.15 for tumor-to-glandular tissue, which was significantly higher than AUC values recovered from images of the targeted probe alone. DDSI values and diagnostic performance did not correlate with HER2 expression level, and tumors with low HER2 expression often produced high AUC, suggesting that even the low expression levels were enough to help distinguish tumor. CONCLUSIONS: The results from this preliminary study of rapid receptor-specific staining in human specimens were consistent with prior preclinical results and demonstrated promising diagnostic potential.


Subject(s)
Breast Neoplasms , Mastectomy , Humans , Female , Breast Neoplasms/diagnostic imaging , Breast Neoplasms/surgery , Mastectomy, Segmental , Coloring Agents , Staining and Labeling
2.
Article in English | MEDLINE | ID: mdl-38765853

ABSTRACT

Neurosurgical fluorescence guidance relies on contrast agents to identify tumor regions to aid in increasing the extent of resection. Existing contrast agents for this indication each have their own limitation: unpredictable contrast from tumor heterogeneity, significant extravasation into the background brain and long incubation times. An ideal contrast agent should have high and rapid contrast that persists well into the surgical procedure. By using a whole animal hyperspectral cryo-imaging system several CAs were screened for these favorable properties and compared to the gold standard of gadolinium enhanced MR. Herein, we briefly report on the leading candidate Rd-PEG1k, which shows high contrast within minutes of administration that persists for at least 90 minutes.

3.
Mol Imaging Biol ; 24(1): 23-30, 2022 02.
Article in English | MEDLINE | ID: mdl-34286423

ABSTRACT

PURPOSE: The ability to noninvasively quantify receptor availability (RA) in solid tumors is an aspirational goal of molecular imaging, often challenged by the influence of non-specific accumulation of the contrast agent. Paired-agent imaging (PAI) techniques aim to compensate for this effect by imaging the kinetics of a targeted agent and an untargeted isotype, often simultaneously, and comparing the kinetics of the two agents to estimate RA. This is usually accomplished using two spectrally distinct fluorescent agents, limiting the technique to superficial tissues and/or preclinical applications. Applying the approach in humans using conventional imaging modalities is generally infeasible since most modalities are unable to routinely image multiple agents simultaneously. We examine the ability of PAI to be implemented in a cross-modality paradigm, in which the targeted and untargeted agent kinetics are imaged with different modalities and used to recover receptor availability. PROCEDURES: Eighteen mice bearing orthotopic brain tumors were administered a solution containing three contrast agents: (1) a fluorescent agent targeted to epidermal growth factor receptor (EGFR), (2) an untargeted fluorescent isotype, and (3) a gadolinium-based contrast agent (GBCA) for MRI imaging. The kinetics of all three agents were imaged for 1 h after administration using an MRI-coupled fluorescence tomography system. Paired-agent receptor availability was computed using (1) the conventional all-optical approach using the targeted and untargeted optical agent images and (2) the cross-modality approach using the targeted optical and untargeted MRI-GBCA images. Receptor availability estimates between the two methods were compared. RESULTS: Receptor availability values using the cross-modality approach were highly correlated to the conventional, single-modality approach (r = 0.94; p < 0.00001). CONCLUSION: These results suggest that cross-modality paired-agent imaging for quantifying receptor availability is feasible. Ultimately, cross-modality paired-agent imaging could facilitate rapid, noninvasive receptor availability quantification in humans using hybrid clinical imaging modalities.


Subject(s)
Brain Neoplasms , Animals , Contrast Media , Feasibility Studies , Magnetic Resonance Imaging , Mice , Molecular Imaging/methods
4.
Article in English | MEDLINE | ID: mdl-34446980

ABSTRACT

Concurrent administration of cancer therapeutics with tumor vasculature targeting treatment has been shown to improve overall survival in multiple human cancer types, as such combinations aim to destroy different compartments of tumors. Anti-angiogenesis therapeutics designed to inhibit tumor induced vessel sprouting have also been shown to re-model the tumor vasculature through a transient vessel normalization effect, which leads to improved perfusion of oxygen and drug in tumor. However, the effects that this normalized vasculature has on the availability of cancer receptor, such as EGFR, is unknown. Herein, we examined the use of MRI-PAFT to estimate cancer surface receptor availability in response to anti-angiogenesis therapy, using MRI-coupled paired agent fluorescence tomography. Bevacizumab treated tumors showed increase in RA compared to control tumors, but this was not statistically significant.

5.
Biomed Opt Express ; 12(1): 395-408, 2021 Jan 01.
Article in English | MEDLINE | ID: mdl-33520389

ABSTRACT

Whole-animal fluorescence cryo-imaging is an established technique that enables visualization of the biodistribution of labeled drugs, contrast agents, functional reporters and cells in detail. However, many tissues produce endogenous autofluorescence, which can confound interpretation of the cryo-imaging volumes. We describe a multi-channel, hyperspectral cryo-imaging system that acquires densely-sampled spectra at each pixel in the 3-dimensional stack. This information enables the use of spectral unmixing to isolate the fluorophore-of-interest from autofluorescence and/or other fluorescent reporters. In phantoms and a glioma xenograft model, we show that the approach improves detection limits, increases tumor contrast, and can dramatically alter image interpretation.

6.
Biomed Opt Express ; 11(7): 3633-3647, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-33014556

ABSTRACT

Subcutaneous (s.c.) tumor models are widely used in pre-clinical cancer metastasis research. Despite this, the dynamics and natural progression of circulating tumor cells (CTCs) and CTC clusters (CTCCs) in peripheral blood are poorly understood in these models. In this work, we used a new technique called 'diffuse in vivo flow cytometry' (DiFC) to study CTC and CTCC dissemination in an s.c. Lewis lung carcinoma (LLC) model in mice. Tumors were grown in the rear flank and we performed DiFC up to 31 days after inoculation. At the study endpoint, lungs were excised and bioluminescence imaging (BLI) was performed to determine the extent of lung metastases. We also used fluorescence macro-cryotome imaging to visualize infiltration and growth of the primary tumor. DiFC revealed significant heterogeneity in CTC and CTCC numbers amongst all mice studied, despite using clonally identical LLC cells and tumor placement. Maximum DiFC count rates corresponded to 0.1 to 14 CTCs per mL of peripheral blood. In general, CTC numbers did not necessarily increase monotonically over time and were poorly correlated with tumor volume. However, there was a good correlation between CTC and CTCC numbers in peripheral blood and lung metastases. We attribute the differences in CTC numbers primarily due to growth patterns of the primary tumor. This study is one of the few reports of CTC shedding dynamics in sub-cutaneous metastasis models and underscores the value of in vivo methods for continuous, non-invasive CTC monitoring.

7.
Theranostics ; 10(24): 11230-11243, 2020.
Article in English | MEDLINE | ID: mdl-33042280

ABSTRACT

Immuno-oncological treatment strategies that target abnormal receptor profiles of tumors are an increasingly important feature of cancer therapy. Yet, assessing receptor availability (RA) and drug-target engagement, important determinants of therapeutic efficacy, is challenging with current imaging strategies, largely due to the complex nonspecific uptake behavior of imaging agents in tumors. Herein, we evaluate whether a quantitative noninvasive imaging approach designed to compensate for nonspecific uptake, MRI-coupled paired-agent fluorescence tomography (MRI-PAFT), is capable of rapidly assessing the availability of epidermal growth factor receptor (EGFR) in response to one dose of anti-EGFR antibody therapy in orthotopic brain tumor models. Methods: Mice bearing orthotopic brain tumor xenografts with relatively high EGFR expression (U251) (N=10) or undetectable human EGFR (9L) (N=9) were considered in this study. For each tumor type, mice were either treated with one dose of cetuximab, or remained untreated. All animals were scanned using MRI-PAFT, which commenced immediately after paired-agent administration, and values of RA were recovered using a model-based approach, which uses the entire dynamic sequence of agent uptake, as well as a simplified "snapshot" approach which requires uptake measurements at only two time points. Recovered values of RA were evaluated between groups and techniques. Hematoxylin & eosin (H&E) and immunohistochemical (IHC) staining was performed on tumor specimens from every animal to confirm tumor presence and EGFR status. Results: In animals bearing EGFR(+) tumors, a significant difference in RA values between treated and untreated animals was observed (RA = 0.24 ± 0.15 and 0.61 ± 0.18, respectively, p=0.027), with an area under the curve - receiver operating characteristic (AUC-ROC) value of 0.92. We did not observe a statistically significant difference in RA values between treated and untreated animals bearing EGFR(-) tumors (RA = 0.18 ± 0.19 and 0.27 ± 0.21, respectively; p = 0.89; AUC-ROC = 0.55), nor did we observe a difference between treated EGFR(+) tumors compared to treated and untreated EGFR(-) tumors. Notably, the snapshot paired-agent strategy quantified drug-receptor engagement within just 30 minutes of agent administration. Examination of the targeted agent alone showed no capacity to distinguish tumors either by treatment or receptor status, even 24h after agent administration. Conclusions: This study demonstrated that a noninvasive imaging strategy enables rapid quantification of receptor availability in response to therapy, a capability that could be leveraged in preclinical drug development, patient stratification, and treatment monitoring.


Subject(s)
Brain Neoplasms/drug therapy , Cetuximab/therapeutic use , Optical Imaging/methods , Recombinant Fusion Proteins/administration & dosage , Animals , Benzenesulfonates/chemistry , Brain/diagnostic imaging , Brain/pathology , Brain Neoplasms/diagnostic imaging , Brain Neoplasms/pathology , Cell Line, Tumor , Cetuximab/pharmacology , ErbB Receptors/analysis , ErbB Receptors/antagonists & inhibitors , ErbB Receptors/metabolism , Fluorescence , Humans , Indoles/chemistry , Magnetic Resonance Imaging , Mice , Molecular Imaging/methods , Recombinant Fusion Proteins/chemistry , Xenograft Model Antitumor Assays
8.
Article in English | MEDLINE | ID: mdl-34183872

ABSTRACT

A paired-agent fluorescent molecular imaging strategy is presented as a method to measure drug target engagement in whole tumor imaging. The protocol involves dynamic imaging of a pair of targeted and control imaging agents prior to and following antibody therapy. Simulations demonstrated that antibody "drug target engagement" can be estimated within a 15%-error over a wide range of tumor physiology (blood flow, vascular permeability, target density) and antibody characteristics (affinity, binding rates). Experimental results demonstrated the first in vivo detection of binding site barrier, highlighting the potential for this methodology to provide novel insights in drug distribution/binding imaging.

9.
Article in English | MEDLINE | ID: mdl-34446978

ABSTRACT

Angiogenesis inhibiting cancer therapy has become a standard treatment for many cancer types. The ability to examine the effects of these drugs in tumors noninvasively could help assess efficacy early in the treatment course or identify optimal times to introduce other combinatorial treatments. Herein, we examine whether a paired agent MRI-coupled fluorescence tomography approach can be used to monitor the effects of anti-angiogenesis therapy. Using small animal models bearing orthotopic glioma xenografts, we demonstrate noninvasive quantification of paired-agent uptake in response to anti-angiogenesis therapy in vivo. The result provides insights on receptor targeted drug delivery in altered vasculature, a potential important development for treatment monitoring and combinatorial strategies.

10.
Article in English | MEDLINE | ID: mdl-34446979

ABSTRACT

The ability to directly measure whole-body fluorescence can enable tracking of labeled cells, metastatic spread, and drug bio-distribution. We describe the development of a new hyperspectral imaging whole body cryo-macrotome designed to acquire 3-D fluorescence volumes in large specimens (whole animals) at high resolution. The use of hyperspectral acquisition provides full spectra at every voxel, enabling spectral decoupling of multiple fluorohpores and autofluorescence. We present examples of tissue spectra and spectral fitting in a rodent glioma xenograft.

11.
Article in English | MEDLINE | ID: mdl-34707326

ABSTRACT

Optical tomography is often coupled with high resolution imaging modality like MRI to provide functional information associated with specific anatomical structure noninvasively. MRI-coupled paired agent fluorescence molecular tomography (MRI-PAFT) is a hybrid imaging modality capable of noninvasively quantifying drug-target engagement in vivo utilizing a targeted and an untargeted fluorescence agent. This study compares the uptake kinetics of MRI contrast agent and fluorescence agents in tumor and normal tissue, and demonstrates the potential of utilizing MRI contrast agent kinetic and targeted fluorescence agent kinetics to quantify targeted tumor receptor concentration in glioma tumor model.

12.
J Biomed Opt ; 24(3): 1-5, 2019 03.
Article in English | MEDLINE | ID: mdl-30851014

ABSTRACT

The observed behavior of short-wave infrared (SWIR) light in tissue, characterized by relatively low scatter and subdiffuse photon transport, has generated considerable interest for the potential of SWIR imaging to produce high-resolution, subsurface images of fluorescence activity in vivo. These properties have important implications for fluorescence-guided surgery and preclinical biomedical research. Until recently, translational efforts have been impeded by the conventional understanding that fluorescence molecular imaging in the SWIR regime requires custom molecular probes that do not yet have proven safety profiles in humans. However, recent studies have shown that two readily available near-infrared (NIR-I) fluorophores produce measurable SWIR fluorescence, implying that other conventional fluorophores produce detectable fluorescence in the SWIR window. Using SWIR spectroscopy and wide-field SWIR imaging with tissue-simulating phantoms, we characterize and compare the SWIR emission properties of eight commercially available red/NIR-I fluorophores commonly used in preclinical and clinical research, in addition to a SWIR-specific fluorophore. All fluorophores produce measurable fluorescence emission in the SWIR, including shorter wavelength dyes such as Alexa Fluor 633 and methylene blue. This study is the first to report SWIR fluorescence from six of the eight conventional fluorophores and establishes an important comparative reference for developing and evaluating SWIR imaging strategies for biomedical applications.


Subject(s)
Fluorescent Dyes/chemistry , Optical Imaging/methods , Spectroscopy, Near-Infrared/methods , Equipment Design , Optical Imaging/instrumentation , Phantoms, Imaging , Spectroscopy, Near-Infrared/instrumentation
13.
Article in English | MEDLINE | ID: mdl-31929673

ABSTRACT

Magnetic resonance imaging (MRI) of gadolinium (Gd)-based contrast agents plays a central role in managing the treatment of intracranial tumors. These images are involved in diagnosis, surgical planning, surgical navigation, and postoperative assessment of extent of resection. Replicating the information from Gd-MRI in the visual surgical field using fluorescent agents that behave similar to gadolinium in vivo would represent a major advance for surgical intervention of these tumors, and could provide robust compensation information to update pre-operative MRI images during surgery. In this paper, we examine the uptake of a Gd-based contrast agent in orthotopic tumor models and compare this behavior to two fluorescein-based contrast agents; specifically, clinical-grade sodium fluorescein (NaFl) and a 900 Da pegylated form of fluorescein. We show that the pegylated form of fluorescein is a more promising Gd-analog candidate.

14.
Article in English | MEDLINE | ID: mdl-31929674

ABSTRACT

In the pursuit of reducing re-excision rates in breast conserving surgery, a dual probe specimen staining technique has emerged as a promising approach to identify positive margins during surgery. This approach generally involves staining the tissue with a fluorescent dye targeted to a biomarker of interest, such as a cell surface receptor, and an untargeted counterpart, imaging both dyes and using the two images together to compensate for instrumentation inhomogeneities and non-specific uptake. A growing body of literature suggests that this approach can effectively discriminate tumor and normal tissue in gross fresh specimens in reasonable timeframes. However, the robustness of the staining protocol is still under investigation as all parameters have not been fully evaluated. In this paper, we examine the effect of staining temperature on diagnostic performance. Tumor (overexpressing EGFR) and normal fresh specimens were stained at room temperature or 37 °C and diagnostic performance compared using area under the curve (AUC) from receiver operator characteristic (ROC) analysis. The results suggest that the use of Licor IRDye800CW-labeled anti-EGFR antibody and Licor IRdye680RD-labeled control antibody as the probe pair is not significantly affected by staining temperature, in contrast to our experience with quantum-dot labeled antibodies. The robustness of the technique using these stains is reassuring and simplifies the staining protocol.

15.
Article in English | MEDLINE | ID: mdl-31929675

ABSTRACT

As the role of immuno-oncological therapeutics expands, the capacity to noninvasively quantify molecular targets and drug-target engagement is increasingly critical to drug development efforts and treatment monitoring. Previously, we showed that MRI-coupled dual-agent fluorescence tomography (FMT) is capable of estimating the concentration of epidermal growth factor receptor (EGFR) in orthotopic glioma models noninvasively. This approach uses the dynamic information of two fluorescent agents (a targeted agent and untargeted isotype) to estimate tumor receptor concentration in vivo. This approach generally relies on the two tracers having similar kinetics in normal tissues, which may not always be the case. Herein, we describe an additional channel added to the MRI-FMT system which measures the uptake of both agents in the normal muscle, data which can be used to compensate for differing kinetic behavior.

16.
J Biomed Opt ; 18(11): 110504, 2013 Nov.
Article in English | MEDLINE | ID: mdl-24247743

ABSTRACT

Cherenkov radiation is induced when charged particles travel through dielectric media (such as biological tissue) faster than the speed of light through that medium. Detection of this radiation or excited luminescence during megavoltage external beam radiotherapy (EBRT) can allow emergence of a new approach to superficial dose estimation, functional imaging, and quality assurance for radiation therapy dosimetry. In this letter, the first in vivo Cherenkov images of a real-time Cherenkoscopy during EBRT are presented. The imaging system consisted of a time-gated intensified charge coupled device (ICCD) coupled with a commercial lens. The ICCD was synchronized to the linear accelerator to detect Cherenkov photons only during the 3.25-µs radiation bursts. Images of a tissue phantom under irradiation show that the intensity of Cherenkov emission is directly proportional to radiation dose, and images can be acquired at 4.7 frames/s with SNR>30. Cherenkoscopy was obtained from the superficial regions of a canine oral tumor during planned, Institutional Animal Care and Use Committee approved, conventional (therapeutically appropriate) EBRT irradiation. Coregistration between photography and Cherenkoscopy validated that Cherenkov photons were detected from the planned treatment region. Real-time images correctly monitored the beam field changes corresponding to the planned dynamic wedge movement, with accurate extent of overall beam field, and expected cold and hot regions.


Subject(s)
Image Processing, Computer-Assisted/methods , Radiotherapy Dosage , Radiotherapy/methods , Animals , Dogs , Mouth Neoplasms/radiotherapy , Phantoms, Imaging , Radiotherapy/instrumentation
17.
Proc SPIE Int Soc Opt Eng ; 8584: 85840C, 2013 Feb 03.
Article in English | MEDLINE | ID: mdl-24073325

ABSTRACT

One of the greatest challenges of nanoparticle cancer therapy is the delivery of adequate numbers of nanoparticles to the tumor site. Iron oxide nanoparticles (IONPs) have many favorable qualities, including their nontoxic composition, the wide range of diameters in which they can be produced, the cell-specific cytotoxic heating that results from their absorption of energy from a nontoxic, external alternating magnetic field (AMF), and the wide variety of functional coatings that can be applied. Although IONPs can be delivered via an intra-tumoral injection to some tumors, the resulting tumor IONP distribution is generally inadequate; additionally, local tumor injections do not allow for the treatment of systemic or multifocal disease. Consequently, the ultimate success of nanoparticle based cancer therapy likely rests with successful systemic, tumor-targeted IONP delivery. In this study, we used a surface-based, bilateral, noninvasive static magnetic field gradient produced by neodymium-boron-iron magnets (80 T/m to 130 T/m in central plane between magnets), a rabbit ear model, and systemically-delivered starch-coated 100 nm magnetic (iron oxide) nanoparticles to demonstrate a spatially-defined increase in the local tissue accumulation of IONPs. In this non-tumor model, the IONPs remained within the local vascular space. It is anticipated that this technique can be used to enhance IONP delivery significantly to the tumor parenchyma/cells.

18.
Proc SPIE Int Soc Opt Eng ; 85842013 Feb 26.
Article in English | MEDLINE | ID: mdl-25285190

ABSTRACT

The predicted success of nanoparticle based cancer therapy is due in part to the presence of the inherent leakiness of the tumor vascular barrier, the so called enhanced permeability and retention (EPR) effect. Although the EPR effect is present in varying degrees in many tumors, it has not resulted in the consistent level of nanoparticle-tumor uptake enhancement that was initially predicted. Magnetic/iron oxide nanoparticles (mNPs) have many positive qualities, including their inert/nontoxic nature, the ability to be produced in various sizes, the ability to be activated by a deeply penetrating and nontoxic magnetic field resulting in cell-specific cytotoxic heating, and the ability to be successfully coated with a wide variety of functional coatings. However, at this time, the delivery of adequate numbers of nanoparticles to the tumor site via systemic administration remains challenging. Ionizing radiation, cisplatinum chemotherapy, external static magnetic fields and vascular disrupting agents are being used to modify the tumor environment/vasculature barrier to improve mNP uptake in tumors and subsequently tumor treatment. Preliminary studies suggest use of these modalities, individually, can result in mNP uptake improvements in the 3-10 fold range. Ongoing studies show promise of even greater tumor uptake enhancement when these methods are combined. The level and location of mNP/Fe in blood and normal/tumor tissue is assessed via histopathological methods (confocal, light and electron microscopy, histochemical iron staining, fluorescent labeling, TEM) and ICP-MS. In order to accurately plan and assess mNP-based therapies in clinical patients, a noninvasive and quantitative imaging technique for the assessment of mNP uptake and biodistribution will be necessary. To address this issue, we examined the use of computed tomography (CT), magnetic resonance imaging (MRI), and Sweep Imaging With Fourier Transformation (SWIFT), an MRI technique which provides a positive iron contrast enhancement and a reduced signal to noise ratio, for effective observation and quantification of Fe/mNP concentrations in the clinical setting.

19.
Proc SPIE Int Soc Opt Eng ; 8584: 85840J, 2013 Feb 26.
Article in English | MEDLINE | ID: mdl-25301998

ABSTRACT

Iron oxide nanoparticles (IONPs) have been investigated as a promising means for inducing tumor cell-specific hyperthermia. Although the ability to generate and use nanoparticles that are biocompatible, tumor specific, and have the ability to produce adequate cytotoxic heat is very promising, significant preclinical and clinical development will be required for clinical efficacy. At this time it appears using IONP-induced hyperthermia as an adjunct to conventional cancer therapeutics, rather than as an independent treatment, will provide the initial IONP clinical treatment. Due to their high-Z characteristics, another option is to use intracellular IONPs to enhance radiation therapy without excitation with AMF (production of heat). To test this concept IONPs were added to cell culture media at a concentration of 0.2 mg Fe/mL and incubated with murine breast adenocarcinoma (MTG-B) cells for either 48 or 72 hours. Extracellular iron was then removed and all cells were irradiated at 4 Gy. Although samples incubated with IONPs for 48 hrs did not demonstrate enhanced post-irradiation cytotoxicity as compared to the non-IONP-containing cells, cells incubated with IONPs for 72 hours, which contained 40% more Fe than 48 hr incubated cells, showed a 25% decrease in clonogenic survival compared to their non-IONP-containing counterparts. These results suggest that a critical concentration of intracellular IONPs is necessary for enhancing radiation cytotoxicity.

20.
Science ; 313(5792): 1441-3, 2006 Sep 08.
Article in English | MEDLINE | ID: mdl-16960007

ABSTRACT

Yeast is a widely used recombinant protein expression system. We expanded its utility by engineering the yeast Pichia pastoris to secrete human glycoproteins with fully complex terminally sialylated N-glycans. After the knockout of four genes to eliminate yeast-specific glycosylation, we introduced 14 heterologous genes, allowing us to replicate the sequential steps of human glycosylation. The reported cell lines produce complex glycoproteins with greater than 90% terminal sialylation. Finally, to demonstrate the utility of these yeast strains, functional recombinant erythropoietin was produced.


Subject(s)
Erythropoietin/metabolism , Pichia/genetics , Protein Engineering , Sialoglycoproteins/biosynthesis , Animals , Cell Line , Cloning, Molecular , Cytidine Monophosphate N-Acetylneuraminic Acid/metabolism , Erythropoietin/chemistry , Erythropoietin/genetics , Genetic Vectors , Glycosylation , Humans , Pichia/metabolism , Rats , Recombinant Proteins/biosynthesis , Recombinant Proteins/chemistry , Sialic Acids/metabolism , Sialoglycoproteins/chemistry , Sialoglycoproteins/genetics , Transformation, Genetic
SELECTION OF CITATIONS
SEARCH DETAIL
...