Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters











Database
Language
Publication year range
1.
Phytopathology ; 111(6): 1029-1041, 2021 Jun.
Article in English | MEDLINE | ID: mdl-33048630

ABSTRACT

Before 1991, Xanthomonas euvesicatoria was the causal agent of bacterial spot of tomato in Florida but was quickly replaced by X. perforans. The X. perforans population has changed in genotype and phenotype despite lack of a clear selection pressure. To determine the current Xanthomonas population in Florida, we collected 585 Xanthomonas strains from 70 tomato fields, representing 22 farms across eight counties, in the Florida tomato production region. Strains were isolated from 23 cultivars across eight seed producers and were associated with eight transplant facilities during the fall 2017 season. Our collection was phenotypically and genotypically characterized. Only X. perforans was identified, and all strains except one (99.8%) were tolerant to copper sulfate and 25% of strains were resistant to streptomycin sulfate. Most of the strains (99.3%) that were resistant to streptomycin sulfate were sequence type 1. The X. perforans population consisted of tomato races 3 (8%) and 4 (92%) and all three previously reported sequence types, ranging from 22 to 46% frequency. Approximately half of all strains, none of which were sequence type 2, produced bacteriocins against X. euvesicatoria. Effector profiles were highly variable among strains, which could impact the strains' host range. The effector xopJ4, which was previously thought to be conserved in X. perforans tomato pathogens, was absent in 19 strains. Nonmetric multidimensional scaling and network analyses show how strains and strain traits were associated with production system variables, including anonymized farms and transplant facilities. These analyses show that the composition of the Florida X. perforans population is diverse and complex.


Subject(s)
Solanum lycopersicum , Xanthomonas , Florida , Plant Diseases , Xanthomonas/genetics
2.
Sci Rep ; 8(1): 14298, 2018 09 24.
Article in English | MEDLINE | ID: mdl-30250161

ABSTRACT

Bacterial spot (BS), caused by Xanthomonas euvesicatoria, X. vesicatoria, X. gardneri and X. perforans, is an economically important bacterial disease of tomato and pepper. Symptoms produced by all four species are nearly indistinguishable. At present, no point-of-care diagnostics exist for BS. In this research, we examined genomes of X. euvesicatoria, X. vesicatoria, X. gardneri, X. perforans and other species of Xanthomonas; the unique gene recG was chosen to design primers to develop a loop-mediated isothermal amplification (LAMP) assay to rapidly and accurately identify and differentiate X. euvesicatoria from other BS causing Xanthomonas sp. using a field-deployable portable BioRangerTM instrument. Specificity of the developed assay was tested against 39 strains of X. euvesicatoria and 41 strains of other species in inclusivity and exclusivity panels, respectively. The assay detection limit was 100 fg (~18 genome copies) of genomic DNA and 1,000 fg in samples spiked with tomato DNA. The assay unambiguously detected X. euvesicatoria in infected tomato plant samples. Concordant results were obtained when multiple operators performed the test independently. No false positives and false negatives were detected. The developed LAMP assay has numerous applications in diagnostics, biosecurity and disease management.


Subject(s)
Genome, Bacterial , Nucleic Acid Amplification Techniques/methods , Xanthomonas/genetics , Xanthomonas/isolation & purification , Computer Simulation , DNA Primers/genetics , Genetic Variation , Solanum lycopersicum/microbiology , Phylogeny , Plant Diseases/microbiology , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL