Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Mil Med ; 188(9-10): e2932-e2940, 2023 08 29.
Article in English | MEDLINE | ID: mdl-36315470

ABSTRACT

INTRODUCTION: Tranexamic acid (TXA) is a standard component of Tactical Combat Casualty Care. Recent retrospective studies have shown that TXA use is associated with a higher rate of venous thromboembolic (VTE) events in combat-injured patients. We aim to determine if selective administration should be considered in the prolonged field care environment. MATERIALS AND METHODS: We performed a systematic review using the 2020 Preferred Reporting Items for Systematic Review and Meta-Analysis guidelines. Clinical trials and observational studies of combat casualties published between January 1, 1960, and June 20, 2022, were included. We analyzed survival and VTE outcomes in TXA recipients and non-recipients. We discussed the findings of each paper in the context of current and future combat environments. RESULTS: Six articles met criteria for inclusion. Only one study was powered to report mortality data, and it demonstrated a 7-fold increase in survival in severely injured TXA recipients. All studies reported an increased risk of VTE in TXA recipients, which exceeded rates in civilian literature. However, five of the six studies used overlapping data from the same registry and were limited by a high rate of missingness in pertinent variables. No VTE-related deaths were identified. CONCLUSIONS: There may be an increased risk of VTE in combat casualties that receive TXA; however, this risk must be considered in the context of improved survival and an absence of VTE-associated deaths. To optimize combat casualty care during prolonged field care, it will be essential to ensure the timely administration of VTE chemoprophylaxis as soon as the risk of significant hemorrhage permits.


Subject(s)
Antifibrinolytic Agents , Tranexamic Acid , Venous Thromboembolism , Venous Thrombosis , Humans , Tranexamic Acid/adverse effects , Antifibrinolytic Agents/adverse effects , Venous Thromboembolism/drug therapy , Venous Thrombosis/complications , Hemorrhage/etiology
3.
Pharmaceutics ; 13(9)2021 Sep 18.
Article in English | MEDLINE | ID: mdl-34575586

ABSTRACT

Gene and drug delivery to the retina is a critical therapeutic goal. While the majority of inherited forms of retinal degeneration affect the outer retina, specifically the photoreceptors and retinal pigment epithelium, effective targeted delivery to this region requires invasive subretinal delivery. Our goal in this work was to evaluate two innovative approaches for increasing both the persistence of delivered nanospheres and their penetration into the outer retina while using the much less invasive intravitreal delivery method. We formulated novel hyaluronic acid nanospheres (HA-NS, 250 nm and 500 nm in diameter) conjugated to fluorescent reporters and delivered them intravitreally to the adult Balb/C mouse retina. They exhibited persistence in the vitreous and along the inner limiting membrane (ILM) for up to 30 days (longest timepoint examined) but little retinal penetration. We thus evaluated the ability of the small molecule, sulfotyrosine, to disrupt the ILM, and found that 3.2 µg/µL sulfotyrosine led to significant improvement in delivery to the outer retina following intravitreal injections without causing retinal inflammation, degeneration, or loss of function. Co-delivery of sulfotyrosine and HA-NS led to robust improvements in penetration of HA-NS into the retina and accumulation along the interface between the photoreceptors and the retinal pigment epithelium. These exciting findings suggest that sulfotyrosine and HA-NS may be an effective strategy for outer retinal targeting after intravitreal injection.

4.
Hum Mol Genet ; 29(16): 2708-2722, 2020 09 29.
Article in English | MEDLINE | ID: mdl-32716032

ABSTRACT

Peripherin 2 (PRPH2) is a retina-specific tetraspanin protein essential for the formation of rod and cone photoreceptor outer segments (OS). Patients with mutations in PRPH2 exhibit severe retinal degeneration characterized by vast inter- and intra-familial phenotypic heterogeneity. To help understand contributors to this within-mutation disease variability, we asked whether the PRPH2 binding partner rod OS membrane protein 1 (ROM1) could serve as a phenotypic modifier. We utilized knockin and transgenic mouse models to evaluate the structural, functional and biochemical effects of eliminating one allele of Rom1 (Rom1+/-) in three different Prph2 models which mimic human disease: C213Y Prph2 (Prph2C/+), K153Del Prph2 (Prph2K/+) and R172W (Prph2R172W). Reducing Rom1 in the absence of Prph2 mutations (Rom1+/-) had no effect on retinal structure or function. However, the effects of reducing Rom1 in the presence of Prph2 mutations were highly variable. Prph2K/+/Rom1+/- mice had improved rod and cone function compared with Prph2K/+ as well as amelioration of K153Del-associated defects in PRPH2/ROM1 oligomerization. In contrast, Prph2R172W/Rom1+/- animals had worsened rod and cone function and exacerbated retinal degeneration compared with Prph2R172W animals. Removing one allele of Rom1 had no effect in Prph2C/+. Combined, our findings support a role for non-pathogenic ROM1 null variants in contributing to phenotypic variability in mutant PRPH2-associated retinal degeneration. Since the effects of Rom1 reduction are variable, our data suggest that this contribution is specific to the type of Prph2 mutation.


Subject(s)
Eye Proteins/genetics , Peripherins/genetics , Retinal Degeneration/genetics , Tetraspanins/genetics , Animals , Disease Models, Animal , Humans , Mice , Mice, Knockout , Mutation/genetics , Retina/metabolism , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Degeneration/pathology
5.
FASEB J ; 34(1): 1211-1230, 2020 01.
Article in English | MEDLINE | ID: mdl-31914632

ABSTRACT

Mutations in peripherin 2 (PRPH2) have been associated with retinitis pigmentosa (RP) and macular/pattern dystrophies, but the origin of this phenotypic variability is unclear. The majority of Prph2 mutations are located in the large intradiscal loop (D2), a region that contains seven cysteines involved in intra- and intermolecular disulfide bonding and protein folding. A mutation at cysteine 213, which is engaged in an intramolecular disulfide bond, leads to butterfly-shaped pattern dystrophy in humans, in sharp contrast to mutations in the adjacent cysteine at position 214 which result in RP. To help understand this unexpected phenotypic variability, we generated a knockin mouse line carrying the C213Y disease mutation. The mutant Prph2 protein lost the ability to oligomerize with rod outer segment membrane protein 1 (Rom1), but retained the ability to form homotetramers. C213Y heterozygotes had significantly decreased overall Prph2 levels as well as decreased rod and cone function. Critically, supplementation with extra wild-type Prph2 protein elicited improvements in Prph2 protein levels and rod outer segment structure, but not functional rescue in rods or cones. These findings suggest that not all interruptions of D2 loop intramolecular disulfide bonding lead to haploinsufficiency-related RP, but rather that more subtle changes can lead to mutant proteins stable enough to exert gain-of-function defects in rods and cones. This outcome highlights the difficulty in targeting Prph2-associated gain-of-function disease and suggests that elimination of the mutant protein will be a pre-requisite for any curative therapeutic strategy.


Subject(s)
Macular Degeneration , Mutation, Missense , Peripherins , Retinal Cone Photoreceptor Cells , Retinal Rod Photoreceptor Cells , Retinitis Pigmentosa , Amino Acid Substitution , Animals , Eye Proteins/genetics , Eye Proteins/metabolism , Humans , Macular Degeneration/genetics , Macular Degeneration/metabolism , Macular Degeneration/pathology , Mice , Mice, Transgenic , Peripherins/genetics , Peripherins/metabolism , Protein Multimerization , Retinal Cone Photoreceptor Cells/metabolism , Retinal Cone Photoreceptor Cells/pathology , Retinal Rod Photoreceptor Cells/metabolism , Retinal Rod Photoreceptor Cells/pathology , Retinitis Pigmentosa/genetics , Retinitis Pigmentosa/metabolism , Retinitis Pigmentosa/pathology , Tetraspanins/genetics , Tetraspanins/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL