Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
EPJ Quantum Technol ; 9(1): 25, 2022.
Article in English | MEDLINE | ID: mdl-36227029

ABSTRACT

The National Aeronautics and Space Administration's Deep Space Quantum Link mission concept enables a unique set of science experiments by establishing robust quantum optical links across extremely long baselines. Potential mission configurations include establishing a quantum link between the Lunar Gateway moon-orbiting space station and nodes on or near the Earth. This publication summarizes the principal experimental goals of the Deep Space Quantum Link. These goals, identified through a multi-year design study conducted by the authors, include long-range teleportation, tests of gravitational coupling to quantum states, and advanced tests of quantum nonlocality.

2.
Opt Lett ; 47(23): 6053-6056, 2022 Dec 01.
Article in English | MEDLINE | ID: mdl-37219170

ABSTRACT

In this work, we analyze the first whispering gallery mode resonator (WGMR) made from monocrystalline yttrium lithium fluoride (YLF). The disc-shaped resonator is fabricated using single-point diamond turning and exhibits a high intrinsic quality factor (Q) of 8×108. Moreover, we employ a novel, to the best of our knowledge, method based on microscopic imaging of Newton's rings through the back of a trapezoidal prism. This method can be used to evanescently couple light into a WGMR and monitor the separation between the cavity and the coupling prism. Accurately calibrating the distance between a coupling prism and a WGMR is desirable as it can be used to improve experimental control and conditions, i.e., accurate coupler gap calibration can aid in tuning into desired coupling regimes and can be used to avoid potential damage caused by collisions between the coupling prism and the WGMR. Here, we use two different trapezoidal prisms together with the high-Q YLF WGMR to demonstrate and discuss this method.

3.
Opt Lett ; 40(16): 3782-5, 2015 Aug 15.
Article in English | MEDLINE | ID: mdl-26274659

ABSTRACT

A tapered cylindrical dielectric optical waveguide acts as a high quality factor white-light cavity providing high field concentration as well as long optical group delay. It is possible to optimize shape of a lossless taper to suppress reflection of the input light and to achieve infinitely high field concentration. These tapers can be used in sensing and optoelectronics applications instead of conventional microcavities.

4.
Opt Express ; 22(10): 12339-48, 2014 May 19.
Article in English | MEDLINE | ID: mdl-24921352

ABSTRACT

We have developed a technique for imaging dark, i.e. non-radiating, objects by intensity interferometry measurements using a thermal light source in the background. This technique is based on encoding the dark object's profile into the spatial coherence of such light. We demonstrate the image recovery using an adaptive error-minimizing Gerchberg-Saxton algorithm in case of a completely opaque object, and outline the steps for imaging purely refractive objects.

5.
Opt Express ; 22(25): 30795-806, 2014 Dec 15.
Article in English | MEDLINE | ID: mdl-25607028

ABSTRACT

Identifying the mode numbers in whispering-gallery mode resonators (WGMRs) is important for tailoring them to experimental needs. Here we report on a novel experimental mode analysis technique based on the combination of frequency analysis and far-field imaging for high mode numbers of large WGMRs. The radial mode numbers q and the angular mode numbers p = ℓ-m are identified and labeled via far-field imaging. The polar mode numbers ℓ are determined unambiguously by fitting the frequency differences between individual whispering gallery modes (WGMs). This allows for the accurate determination of the geometry and the refractive index at different temperatures of the WGMR. For future applications in classical and quantum optics, this mode analysis enables one to control the narrow-band phase-matching conditions in nonlinear processes such as second-harmonic generation or parametric down-conversion.

6.
Opt Express ; 20(19): 21372-8, 2012 Sep 10.
Article in English | MEDLINE | ID: mdl-23037260

ABSTRACT

We report an investigation on angle-cut beta barium borate (BBO) whispering gallery mode (WGM) resonators operating in the ultra violet (UV) wavelength range. A quality (Q) factor of 1.5 × 10(8) has been demonstrated at 370 nm. New upper bounds for the absorption coefficients of BBO are obtained from the Q factor measurements. Moreover, polarization rotations of WGMs in the angle-cut birefringent resonators are observed and investigated. To the best of our knowledge, this is not only the first reported demonstration of an angle-cut WGM resonator but also the first reported high Q WGM resonator in the UV region.

7.
Phys Rev Lett ; 104(10): 103902, 2010 Mar 12.
Article in English | MEDLINE | ID: mdl-20366426

ABSTRACT

Optical frequency comb generation in whispering gallery mode resonators has been demonstrated in several experiments. The spectra of the combs exhibit a wide variety of complex profiles that are not fully understood. We report a detailed study on frequency comb generation in whispering gallery mode resonators including a complete stability analysis and numerical simulations. We show that the interaction of dispersion and nonlinearity is the key in determining the stability of the comb, the complex characteristics of its spectral profile, and its frequency span. The results will be important for understanding the essential physical processes leading to efficient comb generation.

SELECTION OF CITATIONS
SEARCH DETAIL
...