Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
J Infect Dis ; 230(1): e171-e181, 2024 Jul 25.
Article in English | MEDLINE | ID: mdl-39052736

ABSTRACT

BACKGROUND: Bacterial vaginosis (BV) is a condition marked by high vaginal bacterial diversity. Gardnerella vaginalis has been implicated in BV but is also detected in healthy women. The Gardnerella genus has been expanded to encompass 6 validly named species and several genomospecies. We hypothesized that particular Gardnerella species may be more associated with BV. METHODS: Quantitative polymerase chain reaction (PCR) assays were developed targeting the cpn60 gene of species groups including G. vaginalis, G. piotii/pickettii, G. swidsinskii/greenwoodii, and G. leopoldii. These assays were applied to vaginal swabs from individuals with (n = 101) and without BV (n = 150) attending a sexual health clinic in Seattle, Washington. Weekly swabs were collected from 42 participants for up to 12 weeks. RESULTS: Concentrations and prevalence of each Gardnerella species group were significantly higher in participants with BV; 91.1% of BV-positive participants had 3 or more Gardnerella species groups detected compared to 32.0% of BV-negative participants (P < .0001). BV-negative participants with 3 or more species groups detected were more likely to develop BV within 100 days versus those with fewer (60.5% vs 3.7%, P < .0001). CONCLUSIONS: These results suggest that BV reflects a state of high Gardnerella species diversity. No Gardnerella species group was a specific marker for BV.


Subject(s)
Gardnerella , Vaginosis, Bacterial , Humans , Vaginosis, Bacterial/microbiology , Female , Adult , Gardnerella/isolation & purification , Gardnerella/genetics , Young Adult , Vagina/microbiology , Washington/epidemiology , Gardnerella vaginalis/isolation & purification , Gardnerella vaginalis/genetics , Gram-Positive Bacterial Infections/microbiology , Adolescent , Prevalence , Middle Aged , DNA, Bacterial/genetics , Chaperonin 60/genetics , Real-Time Polymerase Chain Reaction
2.
Int J Syst Evol Microbiol ; 73(10)2023 Oct.
Article in English | MEDLINE | ID: mdl-37787404

ABSTRACT

Four obligately anaerobic Gram-positive bacteria representing one novel genus and two novel species were isolated from the female genital tract. Both novel species, designated UPII 610-JT and KA00274T, and an additional isolate of each species were characterized utilizing biochemical, genotypic and phylogenetic analyses. All strains were non-motile and non-spore forming, asaccharolytic, non-cellulolytic and indole-negative coccobacilli. Fatty acid methyl ester analysis for UPII 610-JT and KA00274T and additional isolates revealed C16 : 0, C18 : 0, C18:1ω9c and C18:2ω6,9c to be the major fatty acids for both species. UPII 610-JT had a 16S rRNA gene sequence similarity of 99.4 % to an uncultured clone sequence (AY724740) designated as Bacterial Vaginosis Associated Bacterium 2 (BVAB2). KA00274T had a 16S rRNA gene sequence similarity of 96.5 % to UPII 610-JT. Whole genomic DNA mol% G+C content was 42.2 and 39.3 % for UPII 610-JT and KA00274T, respectively. Phylogenetic analyses indicate these isolates represent a novel genus and two novel species within the Oscillospiraceae family. We propose the names Amygdalobacter indicium gen. nov., sp. nov., for UPII 610-JT representing the type strain of this species (=DSM 112989T, =ATCC TSD-274T) and Amygdalobacter nucleatus gen. nov., sp. nov., for KA00274T representing the type strain of this species (=DSM 112988T, =ATCC TSD-275T).


Subject(s)
Fatty Acids , Lactobacillales , Humans , Female , Fatty Acids/chemistry , Phylogeny , RNA, Ribosomal, 16S/genetics , DNA, Bacterial/genetics , Base Composition , Bacterial Typing Techniques , Sequence Analysis, DNA , Genitalia, Female , Lactobacillales/genetics
3.
Immunity ; 56(8): 1876-1893.e8, 2023 08 08.
Article in English | MEDLINE | ID: mdl-37480848

ABSTRACT

Acute graft-versus-host disease (aGVHD) remains a major limitation of allogeneic stem cell transplantation (SCT), and severe intestinal manifestation is the major cause of early mortality. Intestinal microbiota control MHC class II (MHC-II) expression by ileal intestinal epithelial cells (IECs) that promote GVHD. Here, we demonstrated that genetically identical mice of differing vendor origins had markedly different intestinal microbiota and ileal MHC-II expression, resulting in discordant GVHD severity. We utilized cohousing and antibiotic treatment to characterize the bacterial taxa positively and negatively associated with MHC-II expression. A large proportion of bacterial MHC-II inducers were vancomycin sensitive, and peri-transplant oral vancomycin administration attenuated CD4+ T cell-mediated GVHD. We identified a similar relationship between pre-transplant microbes, HLA class II expression, and both GVHD and mortality in a large clinical SCT cohort. These data highlight therapeutically tractable mechanisms by which pre-transplant microbial taxa contribute to GVHD independently of genetic disparity.


Subject(s)
Gastrointestinal Microbiome , Graft vs Host Disease , Hematopoietic Stem Cell Transplantation , Mice , Animals , Vancomycin , Graft vs Host Disease/etiology , Hematopoietic Stem Cell Transplantation/adverse effects , Hematopoietic Stem Cell Transplantation/methods , Transplantation, Homologous/adverse effects
4.
Article in English | MEDLINE | ID: mdl-33616513

ABSTRACT

Six strictly anaerobic Gram-negative bacteria representing three novel species were isolated from the female reproductive tract. The proposed type strains for each species were designated UPII 199-6T, KA00182T and BV3C16-1T. Phylogenetic analyses based on 16S rRNA gene sequencing indicated that the bacterial isolates were members of the genus Megasphaera. UPII 199-6T and KA00182T had 16S rRNA gene sequence identities of 99.9 % with 16S rRNA clone sequences previously amplified from the human vagina designated as Megasphaera type 1 and Megasphaera type 2, members of the human vaginal microbiota associated with bacterial vaginosis, preterm birth and HIV acquisition. UPII 199-6T exhibited sequence identities ranging from 92.9 to 93.6 % with validly named Megasphaera isolates and KA00182T had 16S rRNA gene sequence identities ranging from 92.6-94.2 %. BV3C16-1T was most closely related to Megasphaera cerevisiae with a 16S rRNA gene sequence identity of 95.4 %. Cells were coccoid or diplococcoid, non-motile and did not form spores. Genital tract isolates metabolized organic acids but were asaccharolytic. The isolates also metabolized amino acids. The DNA G+C content for the genome sequences of UPII 199-6T, KA00182T and BV3C16-1T were 46.4, 38.9 and 49.8 mol%, respectively. Digital DNA-DNA hybridization and average nucleotide identity between the genital tract isolates and other validly named Megasphaera species suggest that each isolate type represents a new species. The major fatty acid methyl esters include the following: C12 : 0, C16 : 0, C16 : 0 dimethyl acetal (DMA) and summed feature 5 (C15 : 0 DMA and/or C14 : 0 3-OH) in UPII 199-6T; C16 : 0 and C16 : 1 cis 9 in KA00182T; C12 : 0; C14 : 0 3-OH; and summed feature 5 in BV3C16-1T. The isolates produced butyrate, isobutyrate, and isovalerate but there were specific differences including production of formate and propionate. Together, these data indicate that UPII 199-6T, KA00182T and BV3C16-1T represent novel species within the genus Megasphaera. We propose the following names: Megasphaera lornae sp. nov. for UPII 199-6T representing the type strain of this species (=DSM 111201T=ATCC TSD-205T), Megasphaera hutchinsoni sp. nov. for KA00182T representing the type strain of this species (=DSM 111202T=ATCC TSD-206T) and Megasphaera vaginalis sp. nov. for BV3C16-1T representing the type strain of this species (=DSM 111203T=ATCC TSD-207T).

SELECTION OF CITATIONS
SEARCH DETAIL