Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters











Database
Language
Publication year range
1.
Org Lett ; 23(22): 8772-8776, 2021 11 19.
Article in English | MEDLINE | ID: mdl-34723549

ABSTRACT

DNA-encoded library (DEL) technology uses DNA tags to track the synthetic history of individual members in a split-and-pool combinatorial synthesis scheme. DEL synthesis hinges on robust methodologies that tolerate combinatorial synthesis schemes while not destroying the information in DNA. We introduce here a DEL-compatible reaction that assembles a boron-containing pyridazine heterocycle. The heterocycle is unique because it can engage in reversible covalent interactions with alcohols─a feature that, until now, has not been deliberately engineered into DELs.


Subject(s)
Gene Library
2.
Bioorg Med Chem ; 52: 116508, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34800876

ABSTRACT

DNA encoded libraries have become an essential hit-finding tool in early drug discovery. Recent advances in synthetic methods for DNA encoded libraries have expanded the available chemical space, but precisely how each type of chemistry affects the DNA is unstudied. Available assays to quantify the damage are limited to write efficiency, where the ability to ligate DNA onto a working encoded library strand is measured, or qPCR is performed to measure the amplifiability of the DNA. These measures read signal quantity and overall integrity, but do not report on specific damages in the encoded information. Herein, we use next generation sequencing (NGS) to measure the quality of the read signal in order to quantify the truthfulness of the retrieved information. We identify CuAAC to be the worst offender in terms of DNA damage amongst commonly used reactions in DELs, causing an increase of G â†’ T transversions. Furthermore, we show that the analysis provides useful information even in fully elaborated DELs; indeed we see that vestiges of the synthetic history, both chemical and biochemical, are written into the mutational spectra of NGS datasets.


Subject(s)
DNA/drug effects , Small Molecule Libraries/pharmacology , DNA/genetics , Gene Library , Molecular Structure , Mutation , Small Molecule Libraries/chemical synthesis , Small Molecule Libraries/chemistry
3.
Angew Chem Int Ed Engl ; 58(28): 9570-9574, 2019 07 08.
Article in English | MEDLINE | ID: mdl-30938482

ABSTRACT

Here we show a seven-step chemical synthesis of a DNA-encoded macrocycle library (DEML) on DNA. Inspired by polyketide and mixed peptide-polyketide natural products, the library was designed to incorporate rich backbone diversity. Achieving this diversity, however, comes at the cost of the custom synthesis of bifunctional building block libraries. This study outlines the importance of careful retrosynthetic design in DNA-encoded libraries, while revealing areas where new DNA synthetic methods are needed.


Subject(s)
Macrocyclic Compounds/chemistry , Small Molecule Libraries/chemical synthesis , Humans
4.
Org Biomol Chem ; 14(24): 5529-33, 2016 Jun 28.
Article in English | MEDLINE | ID: mdl-26876694

ABSTRACT

We use kinetic data, photophysical properties, and mechanistic analyses to compare recently developed high-rate constant oxime and hydrazone formations. We show that when Schiff base formation between aldehydes and arylhydrazines is carried out with an appropriately positioned boron atom, then aromatic B-N heterocycles form irreversibly. These consist of an extended aromatic structure amenable to the tailoring of specific properties such as reaction rate and fluorescence. The reactions work best in neutral aqueous buffer and can be designed to be fluorogenic - properties which are particularly interesting in bioconjugation.

5.
Chem Sci ; 6(6): 3329-3333, 2015 Jun 01.
Article in English | MEDLINE | ID: mdl-29142692

ABSTRACT

We report here the discovery and development of boron-assisted oxime formation as a powerful connective reaction for chemical biology. Oximes proximal to boronic acids form in neutral aqueous buffer with rate constants of more than 104 M-1 s-1, the largest to date for any oxime condensation. Boron's dynamic coordination chemistry confers an adaptability that seems to aid a number of elementary steps in the oxime condensation. In addition to applications in bioconjugation, the emerging importance of boronic acids in chemical biology as carbohydrate receptors or peroxide probes, and the growing list of drugs and drug candidates containing boronic acids suggest many potential applications.

SELECTION OF CITATIONS
SEARCH DETAIL