Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
J Mech Behav Biomed Mater ; 155: 106580, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38759588

ABSTRACT

OBJECTIVES: To investigate the influence of the zirconia and sintering parameters on the optical and mechanical properties. METHODS: Three zirconia materials (3/4Y-TZP, 4Y-TZP, 3Y-TZP) were high-speed (HSS), speed (SS) or conventionally (CS) sintered. Disc-shaped specimens nested in 4 vertical layers of the blank were examined for grain size (GS), crystal phases (c/t'/t/m-phase), translucency (T), and biaxial flexural strength. Fracture load (FL) of three-unit fixed dental prostheses was determined initially and after thermomechanical aging. Fracture types were classified, and data statistically analyzed. RESULTS: 4Y-TZP showed a higher amount of c + t'-phase and lower amount of t-phase, and higher optical and lower mechanical properties than 3Y-TZP. In all materials, T declined from Layer 1 to 4. 3/4Y-TZP showed the highest FL, followed by 3Y-TZP, while 4Y-TZP showed the lowest. In 4Y-TZP, the sintering parameters exercised a direct impact on GS and T, while mechanical properties were largely unaffected. The sintering parameters showed a varying influence on 3Y-TZP. Thermomechanical aging resulted in comparable or higher FL. CONCLUSION: 3/4Y-TZP presenting the highest FL underscores the principle of using strength-gradient multi-layer blanks to profit from high optical properties in the incisal area, while ensuring high mechanical properties in the lower areas subject to tensile forces. With all groups exceeding maximum bite forces, the examined three-unit FDPs showed promising long-term mechanical properties.


Subject(s)
Flexural Strength , Materials Testing , Zirconium , Zirconium/chemistry , Mechanical Phenomena , Particle Size , Stress, Mechanical , Optical Phenomena
2.
Dent Mater ; 37(2): 284-295, 2021 02.
Article in English | MEDLINE | ID: mdl-33358016

ABSTRACT

OBJECTIVE: The aim of this interlaboratory round robin test was to prove the robustness of the DIN EN ISO 6872:2019 and to identify the influence of processing and testing variations. METHODS: Each of the 12 laboratories participated (A-L) received 60 (n = 720) assigned zirconia specimens. All participants seperated the specimens from the blanks, sintered them, polished half of all specimens and performed the biaxial flexural test (DIN EN ISO 6872:2019). The surface roughness was determined by using tactile measuring device. Fractographic examination was performed under scanning-electron-microscopy (SEM). Data was analysed using Kolmogorov-Smirnov-, Kruskal-Wallis-, Mann-Whitney-U-test and two-parametric Weibull statistic (p < 0.05). RESULTS: The results for both preparation methods (as-fired and polished) showed significant differences for some participants. The values for as-fired groups ranged between 513 (I) and 659 (E) MPa. H showed higher Weibull modulus than C, E and I. Within polished groups flexural strengths values from 465 (L) to 1212 (E) MPa were observed, with a tendency to clustered groups A, I, J, L (465-689 MPa) and remaining groups (877-1212 MPa). E presented the highest and H the lowest Weibull modulus. Within A and J, no impact of the preparation method on flexural strength values was observed. Within L, as-fired specimens showed higher flexural strength than polished ones. The flexural strength increase did only associate to a certain extent with measured surface roughness. Fractography showed defect populations depending on polishing techniques, associated to the strength level, especially for polished groups. Reduced strength is related to machining defects, regardless of the surface state. SIGNIFICANCE: DIN EN ISO 6872:2019 can be seen as guidance to biaxial flexural strength testing but additional effort is necessary to ensure interlaboratory comparability. Calibrated furnaces and reliable sintering conditions are mandatory requirements together with detailed specifications on finishing or polishing procedures. Biaxial flexural testing is really a matter of understanding specimen preparation, alignment and mechanical testing by itself. DIN EN ISO 6872:2019 should further recommend reporting of mean surface roughness along with any biaxial flexural strength data. Fractography is a mandatory tool in interpretation and understanding of strength data.


Subject(s)
Flexural Strength , Laboratories , Ceramics , Humans , Materials Testing , Surface Properties , Zirconium
3.
Materials (Basel) ; 9(3)2016 Mar 09.
Article in English | MEDLINE | ID: mdl-28773307

ABSTRACT

The aim of this work was to evaluate the influence of specimen preparation and test method on the flexural strength results of monolithic zirconia. Different monolithic zirconia materials (Ceramill Zolid (Amann Girrbach, Koblach, Austria), Zenostar ZrTranslucent (Wieland Dental, Pforzheim, Germany), and DD Bio zx² (Dental Direkt, Spenge, Germany)) were tested with three different methods: 3-point, 4-point, and biaxial flexural strength. Additionally, different specimen preparation methods were applied: either dry polishing before sintering or wet polishing after sintering. Each subgroup included 40 specimens. The surface roughness was assessed using scanning electron microscopy (SEM) and a profilometer whereas monoclinic phase transformation was investigated with X-ray diffraction. The data were analyzed using a three-way Analysis of Variance (ANOVA) with respect to the three factors: zirconia, specimen preparation, and test method. One-way ANOVA was conducted for the test method and zirconia factors within the combination of two other factors. A 2-parameter Weibull distribution assumption was applied to analyze the reliability under different testing conditions. In general, values measured using the 4-point test method presented the lowest flexural strength values. The flexural strength findings can be grouped in the following order: 4-point < 3-point < biaxial. Specimens prepared after sintering showed significantly higher flexural strength values than prepared before sintering. The Weibull moduli ranged from 5.1 to 16.5. Specimens polished before sintering showed higher surface roughness values than specimens polished after sintering. In contrast, no strong impact of the polishing procedures on the monoclinic surface layer was observed. No impact of zirconia material on flexural strength was found. The test method and the preparation method significantly influenced the flexural strength values.

SELECTION OF CITATIONS
SEARCH DETAIL
...