Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 34
Filter
1.
Elife ; 122023 08 11.
Article in English | MEDLINE | ID: mdl-37566453

ABSTRACT

Monocytes are heterogeneous innate effector leukocytes generated in the bone marrow and released into circulation in a CCR2-dependent manner. During infection or inflammation, myelopoiesis is modulated to rapidly meet the demand for more effector cells. Danger signals from peripheral tissues can influence this process. Herein we demonstrate that repetitive TLR7 stimulation via the epithelial barriers drove a potent emergency bone marrow monocyte response in mice. This process was unique to TLR7 activation and occurred independently of the canonical CCR2 and CX3CR1 axes or prototypical cytokines. The monocytes egressing the bone marrow had an immature Ly6C-high profile and differentiated into vascular Ly6C-low monocytes and tissue macrophages in multiple organs. They displayed a blunted cytokine response to further TLR7 stimulation and reduced lung viral load after RSV and influenza virus infection. These data provide insights into the emergency myelopoiesis likely to occur in response to the encounter of single-stranded RNA viruses at barrier sites.


Subject(s)
Myelopoiesis , Toll-Like Receptor 7 , Virus Diseases , Animals , Mice , Cytokines , Lung , Mice, Inbred C57BL , Monocytes , Toll-Like Receptor 7/genetics , Virus Diseases/immunology
2.
Nature ; 620(7974): 634-642, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37438525

ABSTRACT

The physiological functions of mast cells remain largely an enigma. In the context of barrier damage, mast cells are integrated in type 2 immunity and, together with immunoglobulin E (IgE), promote allergic diseases. Allergic symptoms may, however, facilitate expulsion of allergens, toxins and parasites and trigger future antigen avoidance1-3. Here, we show that antigen-specific avoidance behaviour in inbred mice4,5 is critically dependent on mast cells; hence, we identify the immunological sensor cell linking antigen recognition to avoidance behaviour. Avoidance prevented antigen-driven adaptive, innate and mucosal immune activation and inflammation in the stomach and small intestine. Avoidance was IgE dependent, promoted by Th2 cytokines in the immunization phase and by IgE in the execution phase. Mucosal mast cells lining the stomach and small intestine rapidly sensed antigen ingestion. We interrogated potential signalling routes between mast cells and the brain using mutant mice, pharmacological inhibition, neural activity recordings and vagotomy. Inhibition of leukotriene synthesis impaired avoidance, but overall no single pathway interruption completely abrogated avoidance, indicating complex regulation. Collectively, the stage for antigen avoidance is set when adaptive immunity equips mast cells with IgE as a telltale of past immune responses. On subsequent antigen ingestion, mast cells signal termination of antigen intake. Prevention of immunopathology-causing, continuous and futile responses against per se innocuous antigens or of repeated ingestion of toxins through mast-cell-mediated antigen-avoidance behaviour may be an important arm of immunity.


Subject(s)
Allergens , Avoidance Learning , Hypersensitivity , Mast Cells , Animals , Mice , Allergens/immunology , Avoidance Learning/physiology , Hypersensitivity/immunology , Immunoglobulin E/immunology , Mast Cells/immunology , Stomach/immunology , Vagotomy , Immunity, Innate/immunology , Immunity, Mucosal/immunology , Th2 Cells/immunology , Cytokines/immunology , Leukotrienes/biosynthesis , Leukotrienes/immunology , Intestine, Small/immunology
3.
J Immunother Cancer ; 10(9)2022 09.
Article in English | MEDLINE | ID: mdl-36162919

ABSTRACT

Type 1 conventional dendritic cells (cDC1) play a critical role in priming anticancer cytotoxic CD8+ T cells. DNGR-1 (a.k.a. CLEC9A) is a cDC1 receptor that binds to F-actin exposed on necrotic cancer and normal cells. DNGR-1 signaling enhances cross-presentation of dead-cell associated antigens, including tumor antigens. We have recently shown that secreted gelsolin (sGSN), a plasma protein, competes with DNGR-1 for binding to dead cell-exposed F-actin and dampens anticancer immunity. Here, we investigated the effects of loss of sGSN on various anticancer therapies that are thought to induce cell death and provoke an immune response to cancer. We compared WT (wildtype) with Rag1-/- , Batf3-/- , Clec9agfp/gfp , sGsn-/- or sGsn-/- Clec9agfp/gfp mice implanted with transplantable tumor cell lines, including MCA-205 fibrosarcoma, 5555 BrafV600E melanoma and B16-F10 LifeAct (LA)-ovalbumin (OVA)-mCherry melanoma. Tumor-bearing mice were treated with (1) doxorubicin (intratumoral) chemotherapy for MCA-205, (2) BRAF-inhibitor PLX4720 (oral gavage) targeted therapy for 5555 BrafV600E, and (3) X-ray radiotherapy for B16 LA-OVA-mCherry. We confirmed that efficient tumor control following each therapy requires an immunocompetent host as efficacy was markedly reduced in Rag1-/- compared with WT mice. Notably, across all the therapeutic modalities, loss of sGSN significantly enhanced tumor control compared with treated WT controls. This was an on-target effect as mice deficient in both sGSN and DNGR-1 behaved no differently from WT mice following therapy. In sum, we find that mice deficient in sGsn display enhanced DNGR-1-dependent responsiveness to chemotherapy, targeted therapy and radiotherapy. Our findings are consistent with the notion some cancer therapies induce immunogenic cell death (ICD), which mobilizes anticancer T cells. Our results point to cDC1 and DNGR-1 as decoders of ICD and to sGSN as a negative regulator of such decoding, highlighting sGSN as a possible target in cancer treatment. Further prospective studies are warranted to identify patients who may benefit most from inhibition of sGSN function.


Subject(s)
Gelsolin , Melanoma, Experimental , Actins/metabolism , Animals , Antigens, Neoplasm/metabolism , CD8-Positive T-Lymphocytes , Doxorubicin/metabolism , Gelsolin/genetics , Gelsolin/metabolism , Homeodomain Proteins , Lectins, C-Type , Mice , Ovalbumin , Proto-Oncogene Proteins B-raf/metabolism , Receptors, Immunologic/metabolism
4.
Nature ; 607(7919): 585-592, 2022 07.
Article in English | MEDLINE | ID: mdl-35732737

ABSTRACT

The regenerative potential of mammalian peripheral nervous system neurons after injury is critically limited by their slow axonal regenerative rate1. Regenerative ability is influenced by both injury-dependent and injury-independent mechanisms2. Among the latter, environmental factors such as exercise and environmental enrichment have been shown to affect signalling pathways that promote axonal regeneration3. Several of these pathways, including modifications in gene transcription and protein synthesis, mitochondrial metabolism and the release of neurotrophins, can be activated by intermittent fasting (IF)4,5. However, whether IF influences the axonal regenerative ability remains to be investigated. Here we show that IF promotes axonal regeneration after sciatic nerve crush in mice through an unexpected mechanism that relies on the gram-positive gut microbiome and an increase in the gut bacteria-derived metabolite indole-3-propionic acid (IPA) in the serum. IPA production by Clostridium sporogenes is required for efficient axonal regeneration, and delivery of IPA after sciatic injury significantly enhances axonal regeneration, accelerating the recovery of sensory function. Mechanistically, RNA sequencing analysis from sciatic dorsal root ganglia suggested a role for neutrophil chemotaxis in the IPA-dependent regenerative phenotype, which was confirmed by inhibition of neutrophil chemotaxis. Our results demonstrate the ability of a microbiome-derived metabolite, such as IPA, to facilitate regeneration and functional recovery of sensory axons through an immune-mediated mechanism.


Subject(s)
Indoles , Nerve Regeneration , Propionates , Wound Healing , Animals , Mice , Axons/drug effects , Axons/physiology , Chemotaxis, Leukocyte , Clostridium/metabolism , Fasting , Ganglia, Spinal/metabolism , Gastrointestinal Microbiome , Indoles/blood , Indoles/metabolism , Indoles/pharmacology , Nerve Crush , Nerve Growth Factors/metabolism , Nerve Regeneration/drug effects , Neutrophils/cytology , Neutrophils/immunology , Propionates/blood , Propionates/metabolism , Propionates/pharmacology , Recovery of Function , Sciatic Nerve/injuries , Sequence Analysis, RNA , Wound Healing/drug effects
5.
Science ; 376(6594): eabd5926, 2022 05 13.
Article in English | MEDLINE | ID: mdl-35549409

ABSTRACT

Aging is associated with increased prevalence of axonal injuries characterized by poor regeneration and disability. However, the underlying mechanisms remain unclear. In our experiments, RNA sequencing of sciatic dorsal root ganglia (DRG) revealed significant aging-dependent enrichment in T cell signaling both before and after sciatic nerve injury (SNI) in mice. Lymphotoxin activated the transcription factor NF-κB, which induced expression of the chemokine CXCL13 by neurons. This in turn recruited CXCR5+CD8+ T cells to injured DRG neurons overexpressing major histocompatibility complex class I. CD8+ T cells repressed the axonal regeneration of DRG neurons via caspase 3 activation. CXCL13 neutralization prevented CXCR5+CD8+ T cell recruitment to the DRG and reversed aging-dependent regenerative decline, thereby promoting neurological recovery after SNI. Thus, axonal regeneration can be facilitated by antagonizing cross-talk between immune cells and neurons.


Subject(s)
Aging , Axons , CD8-Positive T-Lymphocytes , Ganglia, Spinal , Nerve Regeneration , Neurons , Sciatic Nerve , Aging/metabolism , Animals , Axons/physiology , CD8-Positive T-Lymphocytes/metabolism , Ganglia, Spinal/metabolism , Mice , Neurons/metabolism , Sciatic Nerve/injuries , Sciatic Nerve/physiology
7.
J Immunol ; 207(12): 2976-2991, 2021 12 15.
Article in English | MEDLINE | ID: mdl-34810221

ABSTRACT

RUNX1 is a transcription factor that plays key roles in hematopoietic development and in hematopoiesis and lymphopoiesis. In this article, we report that RUNX1 regulates a gene expression program in naive mouse B cells that affects the dynamics of cell cycle entry in response to stimulation of the BCR. Conditional knockout of Runx1 in mouse resting B cells resulted in accelerated entry into S-phase after BCR engagement. Our results indicate that Runx1 regulates the cyclin D2 (Ccnd2) gene, the immediate early genes Fosl2, Atf3, and Egr2, and the Notch pathway gene Rbpj in mouse B cells, reducing the rate at which transcription of these genes increases after BCR stimulation. RUNX1 interacts with the chromatin remodeler SNF-2-related CREB-binding protein activator protein (SRCAP), recruiting it to promoter and enhancer regions of the Ccnd2 gene. BCR-mediated activation triggers switching between binding of RUNX1 and its paralog RUNX3 and between SRCAP and the switch/SNF remodeling complex member BRG1. Binding of BRG1 is increased at the Ccnd2 and Rbpj promoters in the Runx1 knockout cells after BCR stimulation. We also find that RUNX1 exerts positive or negative effects on a number of genes that affect the activation response of mouse resting B cells. These include Cd22 and Bank1, which act as negative regulators of the BCR, and the IFN receptor subunit gene Ifnar1 The hyperresponsiveness of the Runx1 knockout B cells to BCR stimulation and its role in regulating genes that are associated with immune regulation suggest that RUNX1 could be involved in regulating B cell tolerance.


Subject(s)
B-Lymphocytes , Core Binding Factor Alpha 2 Subunit , Animals , B-Lymphocytes/metabolism , Cell Cycle/genetics , Core Binding Factor Alpha 2 Subunit/genetics , Core Binding Factor Alpha 2 Subunit/metabolism , Hematopoiesis , Mice , Promoter Regions, Genetic
8.
Nature ; 590(7844): 151-156, 2021 02.
Article in English | MEDLINE | ID: mdl-33442055

ABSTRACT

Up to 20% of people worldwide develop gastrointestinal symptoms following a meal1, leading to decreased quality of life, substantial morbidity and high medical costs. Although the interest of both the scientific and lay communities in this issue has increased markedly in recent years, with the worldwide introduction of gluten-free and other diets, the underlying mechanisms of food-induced abdominal complaints remain largely unknown. Here we show that a bacterial infection and bacterial toxins can trigger an immune response that leads to the production of dietary-antigen-specific IgE antibodies in mice, which are limited to the intestine. Following subsequent oral ingestion of the respective dietary antigen, an IgE- and mast-cell-dependent mechanism induced increased visceral pain. This aberrant pain signalling resulted from histamine receptor H1-mediated sensitization of visceral afferents. Moreover, injection of food antigens (gluten, wheat, soy and milk) into the rectosigmoid mucosa of patients with irritable bowel syndrome induced local oedema and mast cell activation. Our results identify and characterize a peripheral mechanism that underlies food-induced abdominal pain, thereby creating new possibilities for the treatment of irritable bowel syndrome and related abdominal pain disorders.


Subject(s)
Abdominal Pain/immunology , Abdominal Pain/pathology , Allergens/immunology , Food Hypersensitivity/immunology , Food/adverse effects , Intestines/immunology , Irritable Bowel Syndrome/immunology , Abdominal Pain/etiology , Abdominal Pain/microbiology , Adult , Animals , Citrobacter rodentium/immunology , Diarrhea/immunology , Diarrhea/microbiology , Diarrhea/pathology , Enterobacteriaceae Infections/complications , Enterobacteriaceae Infections/immunology , Enterobacteriaceae Infections/microbiology , Female , Food Hypersensitivity/complications , Food Hypersensitivity/microbiology , Food Hypersensitivity/pathology , Glutens/immunology , Humans , Immunoglobulin E/immunology , Intestinal Mucosa/immunology , Intestinal Mucosa/microbiology , Intestinal Mucosa/pathology , Intestines/microbiology , Intestines/pathology , Irritable Bowel Syndrome/etiology , Irritable Bowel Syndrome/microbiology , Irritable Bowel Syndrome/pathology , Male , Mast Cells/immunology , Mice , Mice, Inbred BALB C , Middle Aged , Milk/immunology , Ovalbumin/immunology , Quality of Life , Receptors, Histamine H1/metabolism , Soybean Proteins/immunology , Triticum/immunology
9.
J Invest Dermatol ; 141(2): 404-414.e6, 2021 02.
Article in English | MEDLINE | ID: mdl-32682912

ABSTRACT

Nonmelanoma skin cancer such as cutaneous squamous cell carcinoma (cSCC) is the most common form of cancer and can occur as a consequence of DNA damage to the epithelium by UVR or chemical carcinogens. There is growing evidence that the complement system is involved in cancer immune surveillance; however, its role in cSCC remains unclear. Here, we show that complement genes are expressed in tissue from patients with cSCC, and C3 activation fragments are present in cSCC biopsies, indicating complement activation. Using a range of complement-deficient mice in a two-stage mouse model of chemically-induced cSCC, where a subclinical dose of 7,12-dimethylbenz[a]anthracene causes oncogenic mutations in epithelial cells and 12-O-tetradecanoylphorbol-13-acetate promotes the outgrowth of these cells, we found that C3-deficient mice displayed a significantly reduced tumor burden, whereas an opposite phenotype was observed in mice lacking C5aR1, C5aR2, and C3a receptor. In addition, in mice unable to form the membrane attack complex, the tumor progression was unaltered. C3 deficiency did not affect the cancer response to 7,12-dimethylbenz[a]anthracene treatment alone but reduced the epidermal hyperplasia during 12-O-tetradecanoylphorbol-13-acetate-induced inflammation. Collectively, these data indicate that C3 drives tumorigenesis during chronic skin inflammation, independently of the downstream generation of C5a or membrane attack complex.


Subject(s)
Carcinoma, Squamous Cell/immunology , Complement C3/metabolism , Neoplasms, Experimental/immunology , Skin Neoplasms/immunology , 9,10-Dimethyl-1,2-benzanthracene/administration & dosage , 9,10-Dimethyl-1,2-benzanthracene/toxicity , Animals , Carcinogens/administration & dosage , Carcinogens/toxicity , Carcinoma, Squamous Cell/chemically induced , Carcinoma, Squamous Cell/pathology , Complement Activation/genetics , Complement Activation/immunology , Complement C3/genetics , Complement C5/metabolism , Complement Membrane Attack Complex/metabolism , Disease Models, Animal , Disease Progression , Humans , Mice , Mice, Knockout , Mice, Transgenic , Neoplasms, Experimental/blood , Neoplasms, Experimental/chemically induced , Neoplasms, Experimental/pathology , Receptor, Anaphylatoxin C5a/genetics , Receptor, Anaphylatoxin C5a/metabolism , Receptors, Complement/genetics , Receptors, Complement/metabolism , Signal Transduction/genetics , Signal Transduction/immunology , Skin/drug effects , Skin/immunology , Skin/pathology , Skin Neoplasms/chemically induced , Skin Neoplasms/pathology , Tumor Escape
10.
Nat Immunol ; 21(6): 684-694, 2020 06.
Article in English | MEDLINE | ID: mdl-32231301

ABSTRACT

Aging is associated with remodeling of the immune system to enable the maintenance of life-long immunity. In the CD8+ T cell compartment, aging results in the expansion of highly differentiated cells that exhibit characteristics of cellular senescence. Here we found that CD27-CD28-CD8+ T cells lost the signaling activity of the T cell antigen receptor (TCR) and expressed a protein complex containing the agonistic natural killer (NK) receptor NKG2D and the NK adaptor molecule DAP12, which promoted cytotoxicity against cells that expressed NKG2D ligands. Immunoprecipitation and imaging cytometry indicated that the NKG2D-DAP12 complex was associated with sestrin 2. The genetic inhibition of sestrin 2 resulted in decreased expression of NKG2D and DAP12 and restored TCR signaling in senescent-like CD27-CD28-CD8+ T cells. Therefore, during aging, sestrins induce the reprogramming of non-proliferative senescent-like CD27-CD28-CD8+ T cells to acquire a broad-spectrum, innate-like killing activity.


Subject(s)
CD8-Positive T-Lymphocytes/immunology , CD8-Positive T-Lymphocytes/metabolism , Cellular Senescence/immunology , Killer Cells, Natural/immunology , Killer Cells, Natural/metabolism , Nuclear Proteins/genetics , Adaptor Proteins, Signal Transducing/metabolism , Cytotoxicity, Immunologic , Gene Expression Profiling , Humans , Membrane Proteins/metabolism , NK Cell Lectin-Like Receptor Subfamily K/metabolism , Nuclear Proteins/metabolism , Receptors, Antigen, T-Cell/metabolism , Receptors, Natural Killer Cell/metabolism , Signal Transduction , Yellow Fever/genetics , Yellow Fever/immunology , Yellow Fever/metabolism , Yellow Fever/virology , Yellow fever virus/immunology
11.
Elife ; 92020 01 14.
Article in English | MEDLINE | ID: mdl-31931959

ABSTRACT

IgE is the least abundant circulating antibody class but is constitutively present in healthy tissues bound to resident cells via its high-affinity receptor, FcεRI. The physiological role of endogenous IgE antibodies is unclear but it has been suggested that they provide host protection against a variety of noxious environmental substances and parasitic infections at epithelial barrier surfaces. Here we show, in mice, that skin inflammation enhances levels of IgE antibodies that have natural specificities and a repertoire, VDJ rearrangements and CDRH3 characteristics similar to those of IgE antibodies in healthy tissue. IgE-bearing basophils are recruited to inflamed skin via CXCL12 and thymic stromal lymphopoietin (TSLP)/IL-3-dependent upregulation of CXCR4. In the inflamed skin, IgE/FcεRI-signalling in basophils promotes epithelial cell growth and differentiation, partly through histamine engagement of H1R and H4R. Furthermore, this IgE response strongly drives tumour outgrowth of epithelial cells harbouring oncogenic mutation. These findings indicate that natural IgE antibodies support skin barrier defences, but that during chronic tissue inflammation this role may be subverted to promote tumour growth.


Subject(s)
Epithelial Cells/physiology , Hyperplasia/physiopathology , Immunoglobulin E/metabolism , Inflammation/physiopathology , Animals , Female , Mice , Mice, Transgenic , Neoplasms/physiopathology
12.
Sci Immunol ; 4(38)2019 08 23.
Article in English | MEDLINE | ID: mdl-31444235

ABSTRACT

A dense population of embryo-derived Langerhans cells (eLCs) is maintained within the sealed epidermis without contribution from circulating cells. When this network is perturbed by transient exposure to ultraviolet light, short-term LCs are temporarily reconstituted from an initial wave of monocytes but thought to be superseded by more permanent repopulation with undefined LC precursors. However, the extent to which this process is relevant to immunopathological processes that damage LC population integrity is not known. Using a model of allogeneic hematopoietic stem cell transplantation, where alloreactive T cells directly target eLCs, we have asked whether and how the original LC network is ultimately restored. We find that donor monocytes, but not dendritic cells, are the precursors of long-term LCs in this context. Destruction of eLCs leads to recruitment of a wave of monocytes that engraft in the epidermis and undergo a sequential pathway of differentiation via transcriptionally distinct EpCAM+ precursors. Monocyte-derived LCs acquire the capacity of self-renewal, and proliferation in the epidermis matched that of steady-state eLCs. However, we identified a bottleneck in the differentiation and survival of epidermal monocytes, which, together with the slow rate of renewal of mature LCs, limits repair of the network. Furthermore, replenishment of the LC network leads to constitutive entry of cells into the epidermal compartment. Thus, immune injury triggers functional adaptation of mechanisms used to maintain tissue-resident macrophages at other sites, but this process is highly inefficient in the skin.


Subject(s)
Langerhans Cells/immunology , Monocytes/immunology , Animals , Cells, Cultured , Humans , Langerhans Cells/pathology , Male , Mice , Mice, Inbred C57BL , Mice, Knockout , Mice, Transgenic
13.
Nat Immunol ; 19(8): 859-870, 2018 08.
Article in English | MEDLINE | ID: mdl-30013146

ABSTRACT

IgE is an ancient and conserved immunoglobulin isotype with potent immunological function. Nevertheless, the regulation of IgE responses remains an enigma, and evidence of a role for IgE in host defense is limited. Here we report that topical exposure to a common environmental DNA-damaging xenobiotic initiated stress surveillance by γδTCR+ intraepithelial lymphocytes that resulted in class switching to IgE in B cells and the accumulation of autoreactive IgE. High-throughput antibody sequencing revealed that γδ T cells shaped the IgE repertoire by supporting specific variable-diversity-joining (VDJ) rearrangements with unique characteristics of the complementarity-determining region CDRH3. This endogenous IgE response, via the IgE receptor FcεRI, provided protection against epithelial carcinogenesis, and expression of the gene encoding FcεRI in human squamous-cell carcinoma correlated with good disease prognosis. These data indicate a joint role for immunosurveillance by T cells and by B cells in epithelial tissues and suggest that IgE is part of the host defense against epithelial damage and tumor development.


Subject(s)
B-Lymphocytes/physiology , Carcinoma, Squamous Cell/immunology , Epithelial Cells/physiology , Immunoglobulin E/metabolism , Intraepithelial Lymphocytes/physiology , Neoplasms, Experimental/immunology , Receptors, Antigen, T-Cell, gamma-delta/metabolism , Receptors, IgE/metabolism , Animals , Anthracenes/toxicity , Carcinoma, Squamous Cell/diagnosis , Cell Death , Cells, Cultured , Complementarity Determining Regions/genetics , DNA Damage , Female , High-Throughput Nucleotide Sequencing , Immunoglobulin Class Switching , Immunoglobulin E/genetics , Immunologic Surveillance , Mice , Mice, Inbred C57BL , Mice, Knockout , Neoplasms, Experimental/chemically induced , Piperidines/toxicity , Prognosis , Receptors, Antigen, T-Cell, gamma-delta/genetics
14.
Cell Mol Gastroenterol Hepatol ; 5(4): 569-590, 2018.
Article in English | MEDLINE | ID: mdl-29930979

ABSTRACT

BACKGROUND & AIMS: Effective therapeutic approaches are urgently required to tackle the alarmingly poor survival outcomes in esophageal adenocarcinoma (EAC) patients. EAC originates from within the intestinal-type metaplasia, Barrett's esophagus, a condition arising on a background of gastroesophageal reflux disease and associated inflammation. METHODS: This study used a druggable genome small interfering RNA (siRNA) screening library of 6022 siRNAs in conjunction with bioinformatics platforms, genomic studies of EAC tissues, somatic variation data of EAC from The Cancer Genome Atlas data of EAC, and pathologic and functional studies to define novel EAC-associated, and targetable, immune factors. RESULTS: By using a druggable genome library we defined genes that sustain EAC cell growth, which included an unexpected immunologic signature. Integrating Cancer Genome Atlas data with druggable siRNA targets showed a striking concordance and an EAC-specific gene amplification event associated with 7 druggable targets co-encoded at Chr6p21.1. Over-representation of immune pathway-associated genes supporting EAC cell growth included leukemia inhibitory factor, complement component 1, q subcomponent A chain (C1QA), and triggering receptor expressed on myeloid cells 2 (TREM2), which were validated further as targets sharing downstream signaling pathways through genomic and pathologic studies. Finally, targeting the triggering receptor expressed on myeloid cells 2-, C1q-, and leukemia inhibitory factor-activated signaling pathways (TYROBP-spleen tyrosine kinase and JAK-STAT3) with spleen tyrosine kinase and Janus-activated kinase inhibitor fostamatinib R788 triggered EAC cell death, growth arrest, and reduced tumor burden in NOD scid gamma mice. CONCLUSIONS: These data highlight a subset of genes co-identified through siRNA targeting and genomic studies of expression and somatic variation, specifically highlighting the contribution that immune-related factors play in support of EAC development and suggesting their suitability as targets in the treatment of EAC.

15.
Science ; 360(6388): 558-563, 2018 05 04.
Article in English | MEDLINE | ID: mdl-29724957

ABSTRACT

Deficiency of C1q, the initiator of the complement classical pathway, is associated with the development of systemic lupus erythematosus (SLE). Explaining this association in terms of abnormalities in the classical pathway alone remains problematic because C3 deficiency does not predispose to SLE. Here, using a mouse model of SLE, we demonstrate that C1q, but not C3, restrains the response to self-antigens by modulating the mitochondrial metabolism of CD8+ T cells, which can themselves propagate autoimmunity. C1q deficiency also triggers an exuberant effector CD8+ T cell response to chronic viral infection leading to lethal immunopathology. These data establish a link between C1q and CD8+ T cell metabolism and may explain how C1q protects against lupus, with implications for the role of viral infections in the perpetuation of autoimmunity.


Subject(s)
Autoimmunity/immunology , CD8-Positive T-Lymphocytes/metabolism , Complement C1q/physiology , Lupus Erythematosus, Systemic/immunology , Lymphocytic Choriomeningitis/immunology , Animals , Autoantibodies/immunology , Autoimmunity/genetics , Complement C1q/genetics , Complement C3/genetics , Complement C3/physiology , Complement Pathway, Classical/genetics , Complement Pathway, Classical/immunology , Disease Models, Animal , Immunoglobulins/immunology , Immunologic Memory/immunology , Lupus Erythematosus, Systemic/genetics , Lymphocytic Choriomeningitis/genetics , Mice , Mice, Mutant Strains
16.
Front Immunol ; 9: 851, 2018.
Article in English | MEDLINE | ID: mdl-29740448

ABSTRACT

Natural killer cell receptors (NKRs) are germline-encoded transmembrane proteins that regulate the activation and homeostasis of NK cells as well as other lymphocytes. For γδ T cells, NKRs play critical roles in discriminating stressed (transformed or infected) cells from their healthy counterparts, as proposed in the "lymphoid stress-surveillance" theory. Whereas the main physiologic role is seemingly fulfilled by natural killer group 2 member D, constitutively expressed by γδ T cells, enhancement of their therapeutic potential may rely on natural cytotoxicity receptors (NCRs), like NKp30 or NKp44, that can be induced selectively on human Vδ1+ T cells. Here, we review the contributions of NCRs, NKG2D, and their multiple ligands, to γδ T cell biology in mouse and human.


Subject(s)
Cytotoxicity, Immunologic , Killer Cells, Natural/immunology , NK Cell Lectin-Like Receptor Subfamily K/immunology , T-Lymphocytes/immunology , Animals , Humans , Lymphocyte Activation , Mice , Natural Cytotoxicity Triggering Receptor 2/immunology , Natural Cytotoxicity Triggering Receptor 3/immunology , Receptors, Antigen, T-Cell, gamma-delta/genetics
17.
Cell ; 172(3): 517-533.e20, 2018 01 25.
Article in English | MEDLINE | ID: mdl-29249358

ABSTRACT

B cells constitute an essential line of defense from pathogenic infections through the generation of class-switched antibody-secreting cells (ASCs) in germinal centers. Although this process is known to be regulated by follicular helper T (TfH) cells, the mechanism by which B cells initially seed germinal center reactions remains elusive. We found that NKT cells, a population of innate-like T lymphocytes, are critical for the induction of B cell immunity upon viral infection. The positioning of NKT cells at the interfollicular areas of lymph nodes facilitates both their direct priming by resident macrophages and the localized delivery of innate signals to antigen-experienced B cells. Indeed, NKT cells secrete an early wave of IL-4 and constitute up to 70% of the total IL-4-producing cells during the initial stages of infection. Importantly, the requirement of this innate immunity arm appears to be evolutionarily conserved because early NKT and IL-4 gene signatures also positively correlate with the levels of neutralizing antibodies in Zika-virus-infected macaques. In conclusion, our data support a model wherein a pre-TfH wave of IL-4 secreted by interfollicular NKT cells triggers the seeding of germinal center cells and serves as an innate link between viral infection and B cell immunity.


Subject(s)
B-Lymphocytes/immunology , Germinal Center/immunology , Immunity, Innate , Influenza, Human/immunology , Interleukin-4/genetics , Killer Cells, Natural/immunology , Zika Virus Infection/immunology , Animals , Chickens , Dogs , Germinal Center/cytology , Humans , Interleukin-4/metabolism , Macaca , Macrophages/immunology , Madin Darby Canine Kidney Cells , Mice , Mice, Inbred C57BL
18.
Nat Immunol ; 18(4): 370-372, 2017 03 22.
Article in English | MEDLINE | ID: mdl-28323258
20.
Nat Commun ; 7: 12080, 2016 06 30.
Article in English | MEDLINE | ID: mdl-27357235

ABSTRACT

The skin is under constant renewal and exposure to environmental challenges. How homeostasis is maintained alongside protective mechanisms against damage is unclear. Among the basal epithelial cells (ECs) is a population of resident intraepithelial lymphocytes (IELs) that provide host-protective immune surveillance. Here we show that IELs cross-communicate with ECs via the production of IL-13. Skin ECs are activated by IEL-derived IL-13, enabling a canonical EC stress response. In the absence of IL-13, or canonical IEL, the skin has decreased ability to repair its barrier and increased susceptibility to cutaneous carcinogenesis. IL-13 controls the rate of EC movement through the epidermis, which might explain the importance of IL-13 for epidermal integrity and its suppressive effect on skin carcinogenesis. These findings show that IL-13 acts as a molecular bridge between IELs and ECs, and reveal a critical host-defensive role for type-2 immunity in regulating EC tissue homeostasis and carcinogenesis.


Subject(s)
Epithelial Cells/physiology , Interleukin-13/physiology , Intraepithelial Lymphocytes/metabolism , Skin Neoplasms/etiology , Skin/immunology , Animals , Cytokines/metabolism , Homeostasis , Interleukin-33/metabolism , Mice, Inbred BALB C , Thymic Stromal Lymphopoietin
SELECTION OF CITATIONS
SEARCH DETAIL
...