Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 25
Filter
Add more filters










Publication year range
1.
Sci Total Environ ; 926: 171971, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38547992

ABSTRACT

Phototrophic protists are a fundamental component of the world's oceans by serving as the primary source of energy, oxygen, and organic nutrients for the entire ecosystem. Due to the high thermal seasonality of their habitat, temperate protists could harbour many well-adapted species that tolerate ocean warming. However, these species may not sustain ecosystem functions equally well. To address these uncertainties, we conducted a 30-day mesocosm experiment to investigate how moderate (12 °C) and substantial (18 °C) warming compared to ambient conditions (6 °C) affect the composition (18S rRNA metabarcoding) and ecosystem functions (biomass, gross oxygen productivity, nutritional quality - C:N and C:P ratio) of a North Sea spring bloom community. Our results revealed warming-driven shifts in dominant protist groups, with haptophytes thriving at 12 °C and diatoms at 18 °C. Species responses primarily depended on the species' thermal traits, with indirect temperature effects on grazing being less relevant and phosphorus acting as a critical modulator. The species Phaeocystis globosa showed highest biomass on low phosphate concentrations and relatively increased in some replicates of both warming treatments. In line with this, the C:P ratio varied more with the presence of P. globosa than with temperature. Examining further ecosystem responses under warming, our study revealed lowered gross oxygen productivity but increased biomass accumulation whereas the C:N ratio remained unaltered. Although North Sea species exhibited resilience to elevated temperatures, a diminished functional similarity and heightened compositional variability indicate potential ecosystem repercussions for higher trophic levels. In conclusion, our research stresses the multifaceted nature of temperature effects on protist communities, emphasising the need for a holistic understanding that encompasses trait-based responses, indirect effects, and functional dynamics in the face of exacerbating temperature changes.


Subject(s)
Ecosystem , Oxygen , Biomass , Oceans and Seas , Temperature , Phytoplankton/physiology
2.
FEMS Microbiol Ecol ; 99(8)2023 07 21.
Article in English | MEDLINE | ID: mdl-37442617

ABSTRACT

Phytoplankton spring blooms are typical features in coastal seas and provide heterotrophic bacteria with a rich blend of dissolved substrates. However, they are difficult to study in coastal seas in-situ. Here, we induced a phytoplankton spring bloom and followed its fate for 37 days in four 600 L-mesocosms. To specifically investigate the significance of phytoplankton-born dissolved organic carbon (DOC) we used artificial seawater with low DOC background and inoculated it with a 100 µm-prefiltered plankton community from the North Sea. A biphasic bloom developed, dominated by diatoms and Phaeocystis globosa respectively. In between, bacterial numbers peaked, followed by a peak in virus-like particles, implying that virus infection caused the collapse. Concentrations of dissolved free amino acids exhibited rapid changes, in particular during the diatom bloom and until the peak in bacterial abundance. Dissolved combined amino acids and neutral monosaccharides accumulated continuously, accounting for 22% of DOC as a mean and reaching levels as high as 44%. Bacterial communities were largely dominated by Bacteroidetes, especially the NS3a marine group (family Flavobacteriaceae), but Rhodobacteraceae and Gammaproteobacteria were also prominent members. Our study shows rapid organic matter and community composition dynamics that are hard to trace in natural coastal ecosystems.


Subject(s)
Diatoms , Flavobacteriaceae , Phytoplankton/microbiology , Ecosystem , Diatoms/microbiology , Plankton , Seawater/microbiology
3.
Ecol Lett ; 25(12): 2776-2792, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36223425

ABSTRACT

Primary consumers in aquatic ecosystems are frequently limited by the quality of their food, often expressed as phytoplankton elemental and biochemical composition. However, the effects of these food quality indicators vary across studies, and we lack an integrated understanding of how elemental (e.g. nitrogen, phosphorus) and biochemical (e.g. fatty acid, sterol) limitations interactively influence aquatic food webs. Here, we present the results of a meta-analysis using >100 experimental studies, confirming that limitation by N, P, fatty acids, and sterols all have significant negative effects on zooplankton performance. However, effects varied by grazer response (growth vs. reproduction), specific manipulation, and across taxa. While P limitation had greater effects on zooplankton growth than fatty acids overall, P and fatty acid limitation had equal effects on reproduction. Furthermore, we show that: nutrient co-limitation in zooplankton is strong; effects of essential fatty acid limitation depend on P availability; indirect effects induced by P limitation exceed direct effects of mineral P limitation; and effects of nutrient amendments using laboratory phytoplankton isolates exceed those using natural field communities. Our meta-analysis reconciles contrasting views about the role of various food quality indicators, and their interactions, for zooplankton performance, and provides a mechanistic understanding of trophic transfer in aquatic environments.


Subject(s)
Ecosystem , Zooplankton , Animals , Zooplankton/physiology , Phytoplankton/physiology , Nutrients , Fatty Acids
4.
Ecol Evol ; 12(3): e8753, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35356568

ABSTRACT

Underwater light is spatially as well as temporally variable and directly affects phytoplankton growth and competition. Here we systematically (following the guidelines of PRISMA-EcoEvo) searched and screened the published literature resulting in 640 individual articles. We mapped the conducted research for the objectives of (1) phytoplankton fundamental responses to light, (2) effects of light on the competition between phytoplankton species, and (3) effects of climate-change-induced changes in the light availability in aquatic ecosystems. Among the fundamental responses of phytoplankton to light, the effects of light intensity (quantity, as measure of total photon or energy flux) were investigated in most identified studies. The effects of the light spectrum (quality) that via species-specific light absorbance result in direct consequences on species competition emerged more recently. Complexity in competition arises due to variability and fluctuations in light which effects are sparsely investigated on community level. Predictions regarding future climate change scenarios included changes in in stratification and mixing, lake and coastal ocean darkening, UV radiation, ice melting as well as light pollution which affect the underwater light-climate. Generalization of consequences is difficult due to a high variability, interactions of consequences as well as a lack in sustained timeseries and holistic approaches. Nevertheless, our systematic literature map, and the identified articles within, provide a comprehensive overview and shall guide prospective research.

5.
Proc Natl Acad Sci U S A ; 119(9)2022 03 01.
Article in English | MEDLINE | ID: mdl-35193976

ABSTRACT

Human-induced salinization caused by the use of road deicing salts, agricultural practices, mining operations, and climate change is a major threat to the biodiversity and functioning of freshwater ecosystems. Yet, it is unclear if freshwater ecosystems are protected from salinization by current water quality guidelines. Leveraging an experimental network of land-based and in-lake mesocosms across North America and Europe, we tested how salinization-indicated as elevated chloride (Cl-) concentration-will affect lake food webs and if two of the lowest Cl- thresholds found globally are sufficient to protect these food webs. Our results indicated that salinization will cause substantial zooplankton mortality at the lowest Cl- thresholds established in Canada (120 mg Cl-/L) and the United States (230 mg Cl-/L) and throughout Europe where Cl- thresholds are generally higher. For instance, at 73% of our study sites, Cl- concentrations that caused a ≥50% reduction in cladoceran abundance were at or below Cl- thresholds in Canada, in the United States, and throughout Europe. Similar trends occurred for copepod and rotifer zooplankton. The loss of zooplankton triggered a cascading effect causing an increase in phytoplankton biomass at 47% of study sites. Such changes in lake food webs could alter nutrient cycling and water clarity and trigger declines in fish production. Current Cl- thresholds across North America and Europe clearly do not adequately protect lake food webs. Water quality guidelines should be developed where they do not exist, and there is an urgent need to reassess existing guidelines to protect lake ecosystems from human-induced salinization.


Subject(s)
Guidelines as Topic , Lakes , Salinity , Water Quality , Animals , Anthropogenic Effects , Ecosystem , Europe , North America , Zooplankton
6.
Trends Ecol Evol ; 37(5): 440-453, 2022 05.
Article in English | MEDLINE | ID: mdl-35058082

ABSTRACT

The widespread salinisation of freshwater ecosystems poses a major threat to the biodiversity, functioning, and services that they provide. Human activities promote freshwater salinisation through multiple drivers (e.g., agriculture, resource extraction, urbanisation) that are amplified by climate change. Due to its complexity, we are still far from fully understanding the ecological and evolutionary consequences of freshwater salinisation. Here, we assess current research gaps and present a research agenda to guide future studies. We identified different gaps in taxonomic groups, levels of biological organisation, and geographic regions. We suggest focusing on global- and landscape-scale processes, functional approaches, genetic and molecular levels, and eco-evolutionary dynamics as key future avenues to predict the consequences of freshwater salinisation for ecosystems and human societies.


Subject(s)
Ecosystem , Fresh Water , Biodiversity , Biological Evolution , Climate Change , Humans
7.
Ecol Lett ; 25(2): 555-569, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34854529

ABSTRACT

Three decades of research have demonstrated that biodiversity can promote the functioning of ecosystems. Yet, it is unclear whether the positive effects of biodiversity on ecosystem functioning will persist under various types of global environmental change drivers. We conducted a meta-analysis of 46 factorial experiments manipulating both species richness and the environment to test how global change drivers (i.e. warming, drought, nutrient addition or CO2 enrichment) modulated the effect of biodiversity on multiple ecosystem functions across three taxonomic groups (microbes, phytoplankton and plants). We found that biodiversity increased ecosystem functioning in both ambient and manipulated environments, but often not to the same degree. In particular, biodiversity effects on ecosystem functioning were larger in stressful environments induced by global change drivers, indicating that high-diversity communities were more resistant to environmental change. Using a subset of studies, we also found that the positive effects of biodiversity were mainly driven by interspecific complementarity and that these effects increased over time in both ambient and manipulated environments. Our findings support biodiversity conservation as a key strategy for sustainable ecosystem management in the face of global environmental change.


Subject(s)
Biodiversity , Ecosystem , Droughts , Nutrients , Phytoplankton
8.
Ecology ; 102(4): e03283, 2021 04.
Article in English | MEDLINE | ID: mdl-33428769

ABSTRACT

Increasing human impact on the environment is causing drastic changes in disturbance regimes and how they prevail over time. Of increasing relevance is to further our understanding on biological responses to pulse disturbances (short duration) and how they interact with other ongoing press disturbances (constantly present). Because the temporal and spatial contexts of single experiments often limit our ability to generalize results across space and time, we conducted a modularized mesocosm experiment replicated in space (five lakes along a latitudinal gradient in Scandinavia) and time (two seasons, spring and summer) to generate general predictions on how the functioning and composition of multitrophic plankton communities (zoo-, phyto- and bacterioplankton) respond to pulse disturbances acting either in isolation or combined with press disturbances. As pulse disturbance, we used short-term changes in fish presence, and as press disturbance, we addressed the ongoing reduction in light availability caused by increased cloudiness and lake browning in many boreal and subarctic lakes. First, our results show that the top-down pulse disturbance had the strongest effects on both functioning and composition of the three trophic levels across sites and seasons, with signs for interactive impacts with the bottom-up press disturbance on phytoplankton communities. Second, community composition responses to disturbances were highly divergent between lakes and seasons: temporal accumulated community turnover of the same trophic level either increased (destabilization) or decreased (stabilization) in response to the disturbances compared to control conditions. Third, we found functional recovery from the pulse disturbances to be frequent at the end of most experiments. In a broader context, these results demonstrate that top-down, pulse disturbances, either alone or with additional constant stress upon primary producers caused by bottom-up disturbances, can induce profound but often functionally reversible changes across multiple trophic levels, which are strongly linked to spatial and temporal context dependencies. Furthermore, the identified dichotomy of disturbance effects on the turnover in community composition demonstrates the potential of disturbances to either stabilize or destabilize biodiversity patterns over time across a wide range of environmental conditions.


Subject(s)
Food Chain , Lakes , Animals , Biodiversity , Ecosystem , Humans , Phytoplankton , Seasons
9.
Mar Drugs ; 18(4)2020 Mar 31.
Article in English | MEDLINE | ID: mdl-32244281

ABSTRACT

Sea cucumbers are bottom dwelling invertebrates, which are mostly found on subtropical and tropical sea grass beds, sandy reef flats, or reef slopes. Although constantly exposed to fouling communities in these habitats, many species are surprisingly free of invertebrate epibionts and microfouling algae such as diatoms. In our study, we investigated the anti-fouling (AF) activities of different crude extracts of tropical Indo-Pacific sea cucumber species against the fouling diatom Cylindrotheca closterium. Nine sea cucumber species from three genera (i.e., Holothuria, Bohadschia, Actinopyga) were selected and extracted to assess their AF activities. To verify whether the sea cucumber characteristic triterpene glycosides were responsible for the observed potent AF activities, we tested purified fractions enriched in saponins isolated from Bohadschia argus, representing one of the most active anti-fouling extracts. Saponins were quantified by vanillin-sulfuric acid colorimetric assays and identified by LC-MS and LC-MS/MS analyses. We were able to demonstrate that AF activities in sea cucumber extracts were species-specific, and growth inhibition as well as attachment of the diatom to surfaces is dependent on the saponin concentration (i.e., Actinopyga contained the highest quantities), as well as on the molecular composition and structure of the present saponins (i.e., Bivittoside D derivative was the most bioactive compound). In conclusion, the here performed AF assay represents a promising and fast method for selecting the most promising bioactive organism as well as for identifying novel compounds with potent AF activities for the discovery of potentially novel pharmacologically active natural products.


Subject(s)
Biofouling/prevention & control , Biological Products/pharmacology , Diatoms/drug effects , Saponins/pharmacology , Sea Cucumbers/chemistry , Animals , Biological Products/chemistry , Biological Products/isolation & purification , Chromatography, Liquid , Complex Mixtures/chemistry , Complex Mixtures/isolation & purification , Complex Mixtures/pharmacology , Diatoms/growth & development , Molecular Conformation , Saponins/chemistry , Saponins/isolation & purification , Sea Cucumbers/physiology , Species Specificity , Tandem Mass Spectrometry , Tissue Extracts/chemistry , Tissue Extracts/isolation & purification , Tissue Extracts/pharmacology
10.
Ecology ; 100(11): e02834, 2019 11.
Article in English | MEDLINE | ID: mdl-31330048

ABSTRACT

Nutrient availability and temperature are important drivers of phytoplankton growth and stoichiometry. However, the interactive effects of nutrients and temperature on phytoplankton have been analyzed mostly by addressing changes in average temperature, whereas recent evidence suggests an important role of temperature fluctuations. In a laboratory experiment, we grew a natural phytoplankton community under fluctuating and constant temperature regimes across 25 combinations of nitrogen (N) and phosphorus (P) supply. Temperature fluctuations decreased phytoplankton growth rate (rmax ), as predicted by nonlinear averaging along the temperature-growth relationship. rmax increased with increasing P supply, and a significant temperature × P × N interaction reflected that the shape of the thermal reaction norm depended on nutrients. By contrast, phytoplankton carrying capacity increased with N supply and in fluctuating rather than constant temperature. Higher phytoplankton N:P ratios under constant temperature showed that temperature regimes affected cellular nutrient incorporation. Minor differences in species diversity and composition existed. Our results suggest that temperature variability interacts with nutrient supply to affect phytoplankton physiology and stoichiometry at the community level.


Subject(s)
Phosphorus , Phytoplankton , Nitrogen , Nutrients , Temperature
11.
Glob Chang Biol ; 24(10): 4532-4543, 2018 10.
Article in English | MEDLINE | ID: mdl-29856108

ABSTRACT

While there is a lot of data on interactive effects of eutrophication and warming, to date, we lack data to generate reliable predictions concerning possible effects of nutrient decrease and temperature increase on community composition and functional responses. In recent years, a wide-ranging trend of nutrient decrease (re-oligotrophication) was reported for freshwater systems. Small lakes and ponds, in particular, show rapid responses to anthropogenic pressures and became model systems to investigate single as well as synergistic effects of warming and fertilization in situ and in experiments. Therefore, we set up an experiment to investigate the single as well as the interactive effects of nutrient reduction and gradual temperature increase on a natural freshwater phytoplankton community, using an experimental indoor mesocosm setup. Biomass production initially increased with warming but decreased with nutrient depletion. If nutrient supply was constant, biomass increased further, especially under warming conditions. Under low nutrient supply, we found a sharp transition from initially positive effects of warming to negative effects when resources became scarce. Warming reduced phytoplankton richness and evenness, whereas nutrient reduction at ambient temperature had positive effects on diversity. Our results indicate that temperature effects on freshwater systems will be altered by nutrient availability. These interactive effects of energy increase and resource decrease have major impacts on biodiversity and ecosystem function and thus need to be considered in environmental management plans.


Subject(s)
Climate Change , Eutrophication , Phytoplankton , Biodiversity , Biomass , Ecosystem , Lakes , Phytoplankton/physiology , Ponds
12.
Ecol Lett ; 21(1): 21-30, 2018 Jan.
Article in English | MEDLINE | ID: mdl-29106075

ABSTRACT

Ecological stability is the central framework to understand an ecosystem's ability to absorb or recover from environmental change. Recent modelling and conceptual work suggests that stability is a multidimensional construct comprising different response aspects. Using two freshwater mesocosm experiments as case studies, we show how the response to single perturbations can be decomposed in different stability aspects (resistance, resilience, recovery, temporal stability) for both ecosystem functions and community composition. We find that extended community recovery is tightly connected to a nearly complete recovery of the function (biomass production), whereas systems with incomplete recovery of the species composition ranged widely in their biomass compared to controls. Moreover, recovery was most complete when either resistance or resilience was high, the latter associated with low temporal stability around the recovery trend. In summary, no single aspect of stability was sufficient to reflect the overall stability of the system.


Subject(s)
Biomass , Ecosystem
13.
Sci Rep ; 7(1): 11035, 2017 09 08.
Article in English | MEDLINE | ID: mdl-28887516

ABSTRACT

Biodiversity can strongly influence trophic interactions. The nutritional quality of prey communities and how it is related to the prey diversity is suspected to be a major driver of biodiversity effects. As consumer growth can be co-limited by the supply of several biochemical components, biochemically diverse prey communities should promote consumer growth. Yet, there is no clear consensus on how prey specific diversity is linked to community biochemical diversity since previous studies have considered only single nutritional quality traits. Here, we demonstrate that phytoplankton biochemical traits (fatty acids and sterols) can to a large extent explain Daphnia magna growth and its apparent dependence on phytoplankton species diversity. We find strong correlative evidence between phytoplankton species diversity, biochemical diversity, and growth. The relationship between species diversity and growth was partially explained by the fact that in many communities Daphnia was co-limited by long chained polyunsaturated fatty acids and sterols, which was driven by different prey taxa. We suggest that biochemical diversity is a good proxy for the presence of high food quality taxa, and a careful consideration of the distribution of the different biochemical traits among species is necessary before concluding about causal links between species diversity and consumer performance.


Subject(s)
Biodiversity , Daphnia/growth & development , Phytoplankton/chemistry , Phytoplankton/classification , Animals , Fatty Acids/analysis , Sterols/analysis
14.
Front Microbiol ; 8: 1298, 2017.
Article in English | MEDLINE | ID: mdl-28747904

ABSTRACT

Although aquatic ecologists and biogeochemists are well aware of the crucial importance of ecosystem functions, i.e., how biota drive biogeochemical processes and vice-versa, linking these fields in conceptual models is still uncommon. Attempts to explain the variability in elemental cycling consequently miss an important biological component and thereby impede a comprehensive understanding of the underlying processes governing energy and matter flow and transformation. The fate of multiple chemical elements in ecosystems is strongly linked by biotic demand and uptake; thus, considering elemental stoichiometry is important for both biogeochemical and ecological research. Nonetheless, assessments of ecological stoichiometry (ES) often focus on the elemental content of biota rather than taking a more holistic view by examining both elemental pools and fluxes (e.g., organismal stoichiometry and ecosystem process rates). ES theory holds the promise to be a unifying concept to link across hierarchical scales of patterns and processes in ecology, but this has not been fully achieved. Therefore, we propose connecting the expertise of aquatic ecologists and biogeochemists with ES theory as a common currency to connect food webs, ecosystem metabolism, and biogeochemistry, as they are inherently concatenated by the transfer of carbon, nitrogen, and phosphorous through biotic and abiotic nutrient transformation and fluxes. Several new studies exist that demonstrate the connections between food web ecology, biogeochemistry, and ecosystem metabolism. In addition to a general introduction into the topic, this paper presents examples of how these fields can be combined with a focus on ES. In this review, a series of concepts have guided the discussion: (1) changing biogeochemistry affects trophic interactions and ecosystem processes by altering the elemental ratios of key species and assemblages; (2) changing trophic dynamics influences the transformation and fluxes of matter across environmental boundaries; (3) changing ecosystem metabolism will alter the chemical diversity of the non-living environment. Finally, we propose that using ES to link nutrient cycling, trophic dynamics, and ecosystem metabolism would allow for a more holistic understanding of ecosystem functions in a changing environment.

15.
Limnol Oceanogr Methods ; 15(5): 503-517, 2017 May.
Article in English | MEDLINE | ID: mdl-30828269

ABSTRACT

We developed an effective fluorometric technique to quantify extracellular carbonic anhydrase (eCA) present in natural seawater samples. The technique includes the separation of eCA from cells to achieve low detection limits through high signal : noise ratios. eCA was efficiently extracted from cell membranes by treatment with 0.1 M phosphate buffer containing 2.5 M NaCl. The free eCA specifically forms a fluorescent complex with dansylamide, and the detection limit of the complex is below 0.1 nM. We applied the technique to samples from different culture solutions and natural seawater collected from the Baltic Sea. We observed eCA concentrations to be in the range of 0.10-0.67 nM in natural seawater. The data indicated that this technique is very sensitive, accurate, and feasible for routine and shipboard measurement of eCA from natural seawater. It is therefore an effective and rapid tool to investigate the carbon acquisition of phytoplankton both in mono culture as well natural communities.

16.
Oecologia ; 182(3): 815-27, 2016 11.
Article in English | MEDLINE | ID: mdl-27488200

ABSTRACT

Effects of temperature changes on phytoplankton communities seem to be highly context-specific, but few studies have analyzed whether this context specificity depends on differences in the abiotic conditions or in species composition between studies. We present an experiment that allows disentangling the contribution of abiotic and biotic differences in shaping the response to two aspects of temperature change: permanent increase of mean temperature versus pulse disturbance in form of a heat wave. We used natural communities from six different sites of a floodplain system as well as artificially mixed communities from laboratory cultures and grew both, artificial and natural communities, in water from the six different floodplain lakes (sites). All 12 contexts (2 communities × 6 sites) were first exposed to three different temperature levels (12, 18, 24 °C, respectively) and afterward to temperature pulses (4 °C increase for 7 h day(-1)). Temperature-dependent changes in biomass and community composition depended on the initial composition of phytoplankton communities. Abiotic conditions had a major effect on biomass of phytoplankton communities exposed to different temperature conditions, however, the effect of biotic and abiotic conditions together was even more pronounced. Additionally, phytoplankton community responses to pulse temperature effects depended on the warming history. By disentangling abiotic and biotic effects, our study shows that temperature-dependent effects on phytoplankton communities depend on both, biotic and abiotic constraints.


Subject(s)
Phytoplankton , Temperature , Biomass , Lakes
17.
Sci Rep ; 6: 29286, 2016 07 11.
Article in English | MEDLINE | ID: mdl-27404551

ABSTRACT

Mixotrophs combine photosynthesis with phagotrophy to cover their demands in energy and essential nutrients. This gives them a competitive advantage under oligotropihc conditions, where nutrients and bacteria concentrations are low. As the advantage for the mixotroph depends on light, the competition between mixo- and heterotrophic bacterivores should be regulated by light. To test this hypothesis, we incubated natural plankton from the ultra-oligotrophic Eastern Mediterranean in a set of mesocosms maintained at 4 light levels spanning a 10-fold light gradient. Picoplankton (heterotrophic bacteria (HB), pico-sized cyanobacteria, and small-sized flagellates) showed the fastest and most marked response to light, with pronounced predator-prey cycles, in the high-light treatments. Albeit cell specific activity of heterotrophic bacteria was constant across the light gradient, bacterial abundances exhibited an inverse relationship with light. This pattern was explained by light-induced top-down control of HB by bacterivorous phototrophic eukaryotes (PE), which was evidenced by a significant inverse relationship between HB net growth rate and PE abundances. Our results show that light mediates the impact of mixotrophic bacterivores. As mixo- and heterotrophs differ in the way they remineralize nutrients, these results have far-reaching implications for how nutrient cycling is affected by light.


Subject(s)
Light , Photosynthesis , Plankton/physiology , Animals , Autotrophic Processes , Biomass , Ecosystem , Heterotrophic Processes , Mediterranean Sea , Organ Specificity , Predatory Behavior
18.
Article in English | MEDLINE | ID: mdl-27114584

ABSTRACT

Numerous studies show that increasing species richness leads to higher ecosystem productivity. This effect is often attributed to more efficient portioning of multiple resources in communities with higher numbers of competing species, indicating the role of resource supply and stoichiometry for biodiversity-ecosystem functioning relationships. Here, we merged theory on ecological stoichiometry with a framework of biodiversity-ecosystem functioning to understand how resource use transfers into primary production. We applied a structural equation model to define patterns of diversity-productivity relationships with respect to available resources. Meta-analysis was used to summarize the findings across ecosystem types ranging from aquatic ecosystems to grasslands and forests. As hypothesized, resource supply increased realized productivity and richness, but we found significant differences between ecosystems and study types. Increased richness was associated with increased productivity, although this effect was not seen in experiments. More even communities had lower productivity, indicating that biomass production is often maintained by a few dominant species, and reduced dominance generally reduced ecosystem productivity. This synthesis, which integrates observational and experimental studies in a variety of ecosystems and geographical regions, exposes common patterns and differences in biodiversity-functioning relationships, and increases the mechanistic understanding of changes in ecosystems productivity.


Subject(s)
Biomass , Ecosystem , Animals , Biodiversity , Models, Biological , Plankton/physiology , Plant Physiological Phenomena , Population Dynamics
19.
PLoS One ; 10(9): e0137645, 2015.
Article in English | MEDLINE | ID: mdl-26359659

ABSTRACT

The Gauss-peak spectra (GPS) method represents individual pigment spectra as weighted sums of Gaussian functions, and uses these to model absorbance spectra of phytoplankton pigment mixtures. We here present several improvements for this type of methodology, including adaptation to plate reader technology and efficient model fitting by open source software. We use a one-step modeling of both pigment absorption and background attenuation with non-negative least squares, following a one-time instrument-specific calibration. The fitted background is shown to be higher than a solvent blank, with features reflecting contributions from both scatter and non-pigment absorption. We assessed pigment aliasing due to absorption spectra similarity by Monte Carlo simulation, and used this information to select a robust set of identifiable pigments that are also expected to be common in natural samples. To test the method's performance, we analyzed absorbance spectra of pigment extracts from sediment cores, 75 natural lake samples, and four phytoplankton cultures, and compared the estimated pigment concentrations with concentrations obtained using high performance liquid chromatography (HPLC). The deviance between observed and fitted spectra was generally very low, indicating that measured spectra could successfully be reconstructed as weighted sums of pigment and background components. Concentrations of total chlorophylls and total carotenoids could accurately be estimated for both sediment and lake samples, but individual pigment concentrations (especially carotenoids) proved difficult to resolve due to similarity between their absorbance spectra. In general, our modified-GPS method provides an improvement of the GPS method that is a fast, inexpensive, and high-throughput alternative for screening of pigment composition in samples of phytoplankton material.


Subject(s)
High-Throughput Screening Assays/methods , Pigments, Biological/chemistry , Plant Extracts/chemistry , Algorithms , Microalgae/chemistry , Spectrophotometry/methods
20.
Limnol Oceanogr Methods ; 11(4): 176-186, 2013 Apr 01.
Article in English | MEDLINE | ID: mdl-25729335

ABSTRACT

Over the past four decades, mesocosm studies have been successfully used for a wide range of applications and have provided a lot of information on trophic interactions and biogeochemical cycling of aquatic ecosystem. However, the setup of such mesocosms (e.g., dimensions and duration of experiments) needs to be adapted to the relevant biological processes being investigated. Mixing of the water column is an important factor to be considered in mesocosm experiments because enclosing water in an artificial chamber always alters the mixing regime. Various approaches have been applied to generate mixing in experimental ecosystems, including pure mechanical mixing (e.g., using a disc), airlifts, bubbling with compressed air, and pumping. In this study, we tested different mixing techniques for outdoor mesocosms and their impact on plankton biomass and community composition. We compared mesocosms mixed with a disc, an airlift-system, and bubbling, and used a nonactively mixed mesocosm as a control. We investigated phytoplankton, ciliate, and zooplankton communities during a 19-d mesocosm experiment. Based on our results, we concluded that mechanical mixing with a disc was the most effective technique due to the undertow produced by lowering and lifting the disc. While no mixing technique affected seston biomass, zooplankton biomass was highest in the treatments mixed with the disc. The airlift treatments had the lowest relative share of small flagellates. However, no further differences in phytoplankton community composition occurred and no differences in zooplankton community composition existed between all actively mixed treatments.

SELECTION OF CITATIONS
SEARCH DETAIL
...