Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 118
Filter
2.
Int J Mol Sci ; 23(23)2022 Nov 28.
Article in English | MEDLINE | ID: mdl-36499207

ABSTRACT

Three decades of hepatocyte transplantation have confirmed such a cell-based approach as an adjunct or alternative treatment to solid organ transplantation. Donor cell survival and engraftment were indirectly measured by hepatospecific secretive or released metabolites, such as ammonia metabolism in urea cycle defects. In cases of sepsis or viral infection, ammonia levels can significantly and abruptly increase in these recipients, erroneously implying rejection. Pro-inflammatory cytokines associated with viral or bacterial infections are known to affect many liver functions, including drug-metabolizing enzymes and hepatic transport activities. We examined the influence of pro-inflammatory cytokines in primary human hepatocytes, isolated from both normal donors or patients with metabolic liver diseases. Different measures of hepatocyte functions, including ammonia metabolism and phase 1-3 metabolism, were performed. All the hepatic functions were profoundly and significantly suppressed after exposure to concentrations of from 0.1 to 10 ng/mL of different inflammatory cytokines, alone and in combination. Our data indicate that, like phase I metabolism, suppression of phase II/III and ammonia metabolism occurs in hepatocytes exposed to pro-inflammatory cytokines in the absence of cell death. Such inflammatory events do not necessarily indicate a rejection response or loss of the cell graft, and these systemic inflammatory signals should be carefully considered when the immunosuppressant regiment is reduced or relieved in a hepatocyte transplantation recipient in response to such alleged rejection.


Subject(s)
Liver Diseases , Metabolic Diseases , Humans , Cytokines/metabolism , Ammonia/metabolism , Hepatocytes/metabolism , Liver/metabolism , Liver Diseases/metabolism , Metabolic Diseases/metabolism
3.
Int J Mol Sci ; 22(3)2021 Jan 26.
Article in English | MEDLINE | ID: mdl-33530582

ABSTRACT

Urea cycle disorders are enzymopathies resulting from inherited deficiencies in any genes of the cycle. In severe cases, currently available therapies are marginally effective, with liver transplantation being the only definitive treatment. Donor liver availability can limit even this therapy. Identification of novel therapeutics for genetic-based liver diseases requires models that provide measurable hepatic functions and phenotypes. Advances in stem cell and genome editing technologies could provide models for the investigation of cell-based genetic diseases, as well as the platforms for drug discovery. This report demonstrates a practical, and widely applicable, approach that includes the successful reprogramming of somatic cells from a patient with a urea cycle defect, their genetic correction and differentiation into hepatic organoids, and the subsequent demonstration of genetic and phenotypic change in the edited cells consistent with the correction of the defect. While individually rare, there is a large number of other genetic-based liver diseases. The approach described here could be applied to a broad range and a large number of patients with these hepatic diseases where it could serve as an in vitro model, as well as identify successful strategies for corrective cell-based therapy.


Subject(s)
Gene Editing , Hepatocytes/metabolism , Metabolic Networks and Pathways/genetics , Organoids/cytology , Stem Cells/metabolism , Urea/metabolism , Biomarkers , CRISPR-Cas Systems , Cell Differentiation , Cells, Cultured , Disease Susceptibility , Gene Expression Profiling , Genetic Association Studies , Genetic Variation , Hepatocytes/cytology , Humans , Immunohistochemistry , Induced Pluripotent Stem Cells/cytology , Induced Pluripotent Stem Cells/metabolism , Models, Biological , Stem Cells/cytology
4.
Mol Ther ; 29(5): 1903-1917, 2021 05 05.
Article in English | MEDLINE | ID: mdl-33484963

ABSTRACT

Ornithine transcarbamylase deficiency (OTCD) is a monogenic disease of ammonia metabolism in hepatocytes. Severe disease is frequently treated by orthotopic liver transplantation. An attractive approach is the correction of a patient's own cells to regenerate the liver with gene-repaired hepatocytes. This study investigates the efficacy and safety of ex vivo correction of primary human hepatocytes. Hepatocytes isolated from an OTCD patient were genetically corrected ex vivo, through the deletion of a mutant intronic splicing site achieving editing efficiencies >60% and the restoration of the urea cycle in vitro. The corrected hepatocytes were transplanted into the liver of FRGN mice and repopulated to high levels (>80%). Animals transplanted and liver repopulated with genetically edited patient hepatocytes displayed normal ammonia, enhanced clearance of an ammonia challenge and OTC enzyme activity, as well as lower urinary orotic acid when compared to mice repopulated with unedited patient hepatocytes. Gene expression was shown to be similar between mice transplanted with unedited or edited patient hepatocytes. Finally, a genome-wide screening by performing CIRCLE-seq and deep sequencing of >70 potential off-targets revealed no unspecific editing. Overall analysis of disease phenotype, gene expression, and possible off-target editing indicated that the gene editing of a severe genetic liver disease was safe and effective.


Subject(s)
Gene Editing/methods , Hepatocytes/transplantation , Mutation , Ornithine Carbamoyltransferase Deficiency Disease/therapy , Ornithine Carbamoyltransferase/genetics , Adult , Aged , Ammonia/metabolism , Animals , Cells, Cultured , Child , Disease Models, Animal , Female , Gene Expression Regulation , Hepatocytes/chemistry , Hepatocytes/cytology , Humans , Introns , Male , Mice , Ornithine Carbamoyltransferase Deficiency Disease/genetics , Orotic Acid/urine , RNA Splicing
5.
Cells ; 9(7)2020 07 15.
Article in English | MEDLINE | ID: mdl-32679793

ABSTRACT

Perinatal stem cells and epithelial cells isolated from full term amnion membrane, in particular, have attracted interest over the last decade, as a promising source of multipotent cells for cellular therapies. Human amnion epithelial cells (hAEC) have been used to treat monogenetic liver disease such as maple syrup urine disease or fibrosis of the liver in preclinical studies. In most studies xeno-transplants of hAEC were conducted without providing immunosuppression to recipients, reflecting the tolerogenic properties of hAEC. For many cell types, successful cryopreservation is critical for providing a readily available, off-the-shelf product. In this study, hAEC were isolated from full-term human placenta from 14 different donors, cryopreserved using a protocol and reagents commonly adopted for epithelial cell preservation. The cells were analyzed in terms of survival, recovery, and homogeneity, profiled for surface markers characteristic of epithelial, mesenchymal, endothelial, or hematopoietic cells. There were no significant differences observed in the percentage of cells with epithelial cell markers before and after cryopreservation. The relative proportion of stromal and hematopoietic cells was significantly reduced in hAEC preparations after cryopreservation. The expression of stem cell and immunomodulatory molecules were confirmed in the final product. Since multipotent cells are readily available from full-term placenta, this novel cell source might significantly increase the number of patients eligible to receive cellular therapies for liver and other diseases.


Subject(s)
Amnion/cytology , Cryopreservation , Epithelial Cells/cytology , Cell Survival , Epithelial Cells/metabolism , Extracellular Matrix/metabolism , Humans , Immunomodulation , Quality Control , Stem Cells/cytology , Stem Cells/metabolism
6.
Hepatology ; 72(2): 656-670, 2020 08.
Article in English | MEDLINE | ID: mdl-31785104

ABSTRACT

BACKGROUND AND AIMS: Genetically modified mice have been used extensively to study human disease. However, the data gained are not always translatable to humans because of major species differences. Liver-humanized mice (LHM) are considered a promising model to study human hepatic and systemic metabolism. Therefore, we aimed to further explore their lipoprotein metabolism and to characterize key hepatic species-related, physiological differences. APPROACH AND RESULTS: Fah-/- , Rag2-/- , and Il2rg-/- knockout mice on the nonobese diabetic (FRGN) background were repopulated with primary human hepatocytes from different donors. Cholesterol lipoprotein profiles of LHM showed a human-like pattern, characterized by a high ratio of low-density lipoprotein to high-density lipoprotein, and dependency on the human donor. This pattern was determined by a higher level of apolipoprotein B100 in circulation, as a result of lower hepatic mRNA editing and low-density lipoprotein receptor expression, and higher levels of circulating proprotein convertase subtilisin/kexin type 9. As a consequence, LHM lipoproteins bind to human aortic proteoglycans in a pattern similar to human lipoproteins. Unexpectedly, cholesteryl ester transfer protein was not required to determine the human-like cholesterol lipoprotein profile. Moreover, LHM treated with GW3965 mimicked the negative lipid outcomes of the first human trial of liver X receptor stimulation (i.e., a dramatic increase of cholesterol and triglycerides in circulation). Innovatively, LHM allowed the characterization of these effects at a molecular level. CONCLUSIONS: LHM represent an interesting translatable model of human hepatic and lipoprotein metabolism. Because several metabolic parameters displayed donor dependency, LHM may also be used in studies for personalized medicine.


Subject(s)
Benzoates/pharmacokinetics , Benzylamines/pharmacokinetics , Cholesterol/metabolism , Hepatocytes/metabolism , Lipoproteins/metabolism , Liver X Receptors/agonists , Liver/metabolism , Animals , Hepatocytes/transplantation , Humans , Liver/surgery , Male , Mice , Mice, Knockout
7.
Stem Cells Dev ; 28(14): 907-919, 2019 07 15.
Article in English | MEDLINE | ID: mdl-31122128

ABSTRACT

Differentiation of stem cells to hepatocyte-like cells (HLCs) holds great promise for basic research, drug and toxicological investigations, and clinical applications. There are currently no protocols for the production of HLCs from stem cells, such as embryonic stem cells or induced pluripotent stem cells, that produce fully mature hepatocytes with a wide range of mature hepatic functions. This report describes a standard method to assess the maturation of stem cell-derived HLCs with a moderately high-throughput format, by analysing liver gene expression by quantitative RT-qPCR. This method also provides a robust data set of the expression of 62 genes expressed in normal liver, generated from 17 fetal and 25 mature human livers, so that investigators can quickly and easily compare the expression of these genes in their stem cell-derived HLCs with the values obtained in authentic fetal and mature human liver. The simple methods described in this study will provide a quick and accurate assessment of the efficacy of a differentiation protocol and will help guide the optimization of differentiation conditions.


Subject(s)
Cell Differentiation , Gene Expression Profiling , Gene Expression Regulation , Hepatocytes/metabolism , Induced Pluripotent Stem Cells/metabolism , Liver/metabolism , Hepatocytes/cytology , Humans , Induced Pluripotent Stem Cells/cytology , Liver/cytology
8.
PLoS One ; 14(4): e0215490, 2019.
Article in English | MEDLINE | ID: mdl-31022207

ABSTRACT

Induced pluripotent stem cell (iPSC)-technology is an important platform in medicine and disease modeling. Physiological degeneration and disease onset are common occurrences in the aging population. iPSCs could offer regenerative medical options for age-related degeneration and disease in the elderly. However, reprogramming somatic cells from the elderly is inefficient when successful at all. Perhaps due to their low rates of replication in culture, traditional transduction and reprogramming approaches with centenarian fibroblasts met with little success. A simple and reproducible reprogramming process is reported here which enhances interactions of the cells with the viral vectors that leads to improved iPSC generation. The improved methods efficiently generates fully reprogrammed iPSC lines from 105-107 years old subjects in feeder-free conditions using an episomal, Sendai-Virus (SeV) reprogramming vector expressing four reprogramming factors. In conclusion, dermal fibroblasts from human subjects older than 100 years can be efficiently and reproducibly reprogrammed to fully pluripotent cells with minor modifications to the standard reprogramming procedures. Efficient generation of iPSCs from the elderly may provide a source of cells for the regeneration of tissues and organs with autologous cells as well as cellular models for the study of aging, longevity and age-related diseases.


Subject(s)
Cellular Reprogramming Techniques/methods , Cellular Reprogramming , Fibroblasts/physiology , Induced Pluripotent Stem Cells/physiology , Adult , Age Factors , Aged, 80 and over , Cells, Cultured , Genetic Vectors/genetics , Humans , Hydrodynamics , Infant, Newborn , Primary Cell Culture , Reproducibility of Results , Sendai virus/genetics , Skin/cytology , Skin Aging/physiology , Transfection/methods , Transplantation, Autologous/methods
9.
J Inherit Metab Dis ; 42(6): 1054-1063, 2019 11.
Article in English | MEDLINE | ID: mdl-30843237

ABSTRACT

A liver-humanized mouse model for CPS1-deficiency was generated by the high-level repopulation of the mouse liver with CPS1-deficient human hepatocytes. When compared with mice that are highly repopulated with CPS1-proficient human hepatocytes, mice that are repopulated with CPS1-deficient human hepatocytes exhibited characteristic symptoms of human CPS1 deficiency including an 80% reduction in CPS1 metabolic activity, delayed clearance of an ammonium chloride infusion, elevated glutamine and glutamate levels, and impaired metabolism of [15 N]ammonium chloride into urea, with no other obvious phenotypic differences. Because most metabolic liver diseases result from mutations that alter critical pathways in hepatocytes, a model that incorporates actual disease-affected, mutant human hepatocytes is useful for the investigation of the molecular, biochemical, and phenotypic differences induced by that mutation. The model is also expected to be useful for investigations of modified RNA, gene, and cellular and small molecule therapies for CPS1-deficiency. Liver-humanized models for this and other monogenic liver diseases afford the ability to assess the therapy on actual disease-affected human hepatocytes, in vivo, for long periods of time and will provide data that are highly relevant for investigations of the safety and efficacy of gene-editing technologies directed to human hepatocytes and the translation of gene-editing technology to the clinic.


Subject(s)
Carbamoyl-Phosphate Synthase (Ammonia)/genetics , Carbamoyl-Phosphate Synthase I Deficiency Disease/genetics , Carbamoyl-Phosphate Synthase I Deficiency Disease/pathology , Hepatocytes/transplantation , Hydrolases/genetics , Liver/metabolism , Animals , Carbamoyl-Phosphate Synthase (Ammonia)/metabolism , Cells, Cultured , Child , Disease Models, Animal , Female , Hepatocytes/metabolism , Humans , Hydrolases/metabolism , Infant , Infant, Newborn , Liver/pathology , Male , Mice , Mice, Transgenic , Middle Aged , Organ Specificity/genetics
10.
Int J Cancer ; 144(10): 2613-2624, 2019 05 15.
Article in English | MEDLINE | ID: mdl-30488605

ABSTRACT

Hepatocellular carcinoma (HCC) is a highly malignant tumor that responds very poorly to existing therapies, most probably due to its extraordinary inter- and intra-tumor molecular heterogeneity. The modest therapeutic response to molecular targeted agents underlines the need for new therapeutic approaches for HCC. In our study, we took advantage of well-characterized human HCC cell lines, differing in transcriptomic subtypes, DNA mutation and amplification alterations, reflecting the heterogeneity of primary HCCs, to provide a preclinical evaluation of the specific heat shock protein 90 (HSP90) inhibitor AUY922 (luminespib). Indeed, HSP90 is highly expressed in different tumor types, but its role in hepatocarcinogenesis remains unclear. Here, we analyzed HSP90 expression in primary human HCC tissues and evaluated the antitumor effects of AUY922 in vitro as well as in vivo. HSP90 expression was significantly higher in HCC tissues than in cirrhotic peritumoral liver tissues. AUY922 treatment reduced the cell proliferation and viability of HCC cells in a dose-dependent manner, but did not do so for normal human primary hepatocytes. AUY922 treatment led to the upregulation of HSP70 and the simultaneous depletion of HSP90 client proteins. In addition, in a cell type-dependent manner, treatment induced either both caspase-dependent ß-catenin cleavage and the upregulation of p53, or Mcl-1 expression, or NUPR1 expression, which contributed to the increased efficacy of, or resistance to, treatment. Finally, in vivo AUY922 inhibited tumor growth in a xenograft model. In conclusion, HSP90 is a promising therapeutic target in HCC, and AUY922 could be a drug candidate for its treatment.


Subject(s)
Antineoplastic Agents/therapeutic use , Carcinoma, Hepatocellular/drug therapy , HSP90 Heat-Shock Proteins/metabolism , Isoxazoles/therapeutic use , Liver Neoplasms/drug therapy , Resorcinols/therapeutic use , Small Molecule Libraries/therapeutic use , Adult , Aged , Aged, 80 and over , Animals , Carcinoma, Hepatocellular/metabolism , Caspases/metabolism , Cell Line, Tumor , Female , Gene Expression Regulation, Neoplastic/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/metabolism , Male , Mice, Nude , Middle Aged , Mutation/genetics , Transcriptome/drug effects , Up-Regulation/drug effects , beta Catenin/metabolism
11.
Cytotherapy ; 21(1): 113-124, 2019 01.
Article in English | MEDLINE | ID: mdl-30409699

ABSTRACT

Placenta is a non-controversial and promising source of cells for the treatment of several liver diseases. We previously reported that transplanted human amnion epithelial cells (hAECs) differentiate into hepatocyte-like cells, resulting in correction of mouse models of metabolic liver disease or acute hepatic failure. As part of preclinical safety studies, we investigated the distribution of hAECs using two routes of administration to efficiently deliver hAECs to the liver. Optical imaging is commonly used because it can provide fast, high-throughput, whole-body imaging, thus DiR-labeled hAECs were injected into immunodeficient mice, via the spleen or the tail vein. The cell distribution was monitored using an in vivo imaging system over the next 24 h. After splenic injection, the DiR signal was detected in liver and spleen at 1, 3 and 24 h post-transplant. The distribution was confirmed by analysis of human DNA content at 24 h post-transplant and human-specific cytokeratin 8/18 staining. Tail vein infusion resulted in cell engraftment mainly in the lungs, with minimal detection in the liver. Delivery of cells to the portal vein, via the spleen, resulted in efficient delivery of hAECs to the liver, with minimal, off-target distribution to lungs or other organs.


Subject(s)
Amnion/cytology , Cell Transplantation/methods , Epithelial Cells/transplantation , Liver Diseases/therapy , Placenta/cytology , Animals , Cells, Cultured , Female , Humans , Liver/metabolism , Lung , Mice , Models, Animal , Portal Vein , Pregnancy , Spleen , Splenic Vein
12.
J Immunol ; 202(3): 724-735, 2019 02 01.
Article in English | MEDLINE | ID: mdl-30587530

ABSTRACT

This study investigates the mechanism(s) underlying the immunoregulatory activities of placenta-derived human amnion epithelial cells (hAEC). The working hypothesis is that NAD+ and ATP, along with ectoenzymes involved in their metabolism, play a significant role in hAEC-mediated immune regulation. Proof of principle of the hypothesis was obtained by analyzing the interactions between hAEC and the main human leukocyte populations. The results obtained indicate that hAEC constitutively express a unique combination of functional ectoenzymes, driving the production of adenosine (ADO) via canonical (CD39, CD73) and alternative (CD38, CD203a/PC-1, CD73) pathways. Further, the picture is completed by the observation that hAEC express A1, A2a, and A2b ADO receptors as well as ADO deaminase, the enzyme involved in ADO catabolism. The contribution of the purinergic mediator to immunomodulation was confirmed by exposing in vitro different immune effector cells to the action of primary hAECs. B cells showed an enhanced proliferation and diminished spontaneous apoptosis when in contact with hAEC. T cell proliferation was partially inhibited by hAEC through ADO production, as confirmed by using specific ectoenzyme inhibitors. Further, hAEC induced an expansion of both T and B regulatory cells. Last, hAEC inhibited NK cell proliferation. However, the involvement of ADO-producing ectoenzymes is less apparent in this context. In conclusion, hAEC exert different in vitro immunoregulatory effects, per se, as a result of interactions with different populations of immune effector cells. These results support the view that hAEC are instrumental for regenerative medicine as well as in therapeutic applications for immune-related diseases.


Subject(s)
Adenosine Deaminase/metabolism , Adenosine/biosynthesis , Amnion/cytology , Cell Proliferation , Epithelial Cells/enzymology , Adenosine Deaminase/genetics , B-Lymphocytes/cytology , Cells, Cultured , Epithelial Cells/immunology , Humans , Killer Cells, Natural/cytology , Lymphocyte Activation , Metabolic Networks and Pathways , Receptor, Adenosine A1/metabolism , Receptor, Adenosine A2A/metabolism , T-Lymphocytes/cytology
13.
Int J Oncol ; 51(2): 533-544, 2017 Aug.
Article in English | MEDLINE | ID: mdl-28656311

ABSTRACT

The beneficial health properties of the Mediter-ranean diet are well recognized. The principle source of fat in Mediterranean diet is extra-virgin olive oil (EVOO). Oleocanthal (OC) is a naturally occurring minor phenolic compound isolated from EVOO, which has shown a potent anti-inflammatory activity, by means of its ability to inhibit the cyclooxygenase (COX) enzymes COX-1 and COX-2. A large body of evidence indicates that phenols exhibit anticancer activities. The aim of the present study was to evaluate the potential anticancer effects of OC in hepatocellular carcinoma (HCC) and colorectal carcinoma (CRC) models. A panel of human HCC (HepG2, Huh7, Hep3B and PLC/PRF/5) and CRC (HT29, SW480) cell lines was used. Cells were treated with OC, and cell viability and apoptosis were evaluated. Compared with classical commercially available COX inhibitors (ibuprofen, indomethacin, nimesulide), OC was more effective in inducing cell growth inhibition in HCC and CRC cells. Moreover, OC inhibited colony formation and induced apoptosis, as confirmed by PARP cleavage, activation of caspases 3/7 and chromatin condensation. OC treatment in a dose dependent-manner induced expression of γH2AX, a marker of DNA damage, increased intracellular ROS production and caused mitochondrial depolarization. Moreover, the effects of OC were suppressed by the ROS scavenger N-acetyl-L-cysteine. Finally, OC was not toxic in primary normal human hepatocytes. In conclusion, OC treatment was found to exert a potent anticancer activity against HCC and CRC cells. Taken together, our findings provide preclinical support of the chemotherapeutic potential of EVOO against cancer.


Subject(s)
Aldehydes/administration & dosage , Carcinoma, Hepatocellular/diet therapy , Colorectal Neoplasms/diet therapy , Liver Neoplasms/diet therapy , Phenols/administration & dosage , Aldehydes/chemistry , Apoptosis/drug effects , Carcinoma, Hepatocellular/enzymology , Carcinoma, Hepatocellular/pathology , Cell Proliferation/drug effects , Colorectal Neoplasms/enzymology , Colorectal Neoplasms/pathology , Cyclooxygenase Inhibitors/administration & dosage , Cyclopentane Monoterpenes , DNA Damage/drug effects , Hep G2 Cells , Humans , Liver Neoplasms/enzymology , Liver Neoplasms/pathology , Olive Oil/administration & dosage , Olive Oil/chemistry , Phenols/chemistry , Reactive Oxygen Species/metabolism
14.
Placenta ; 59: 139-145, 2017 Nov.
Article in English | MEDLINE | ID: mdl-28411944

ABSTRACT

The aim of Regenerative Medicine is to replace or regenerate human cells, tissues or organs in order to restore normal function. Among all organs, the liver is endowed with remarkable regenerative capacity. Nonetheless, there are conditions in which this ability is impaired, and the use of isolated cells, including stem cells, is being considered as a possible therapeutic tool for the management of chronic hepatic disease. Placenta holds great promise for the field of regenerative medicine. It has long been used for the treatment of skin lesions and in ophthalmology, due to its ability to modulate inflammation and promote healing. More recently, cells isolated from the amniotic membrane are being considered as a possible resource for tissue regeneration, including in the context liver disease. Two cell types can be easily isolated from human amnion: epithelial cells (hAEC) and mesenchymal stromal cells (hAMSC). However only the first cell population has been demonstrated to be a possible source of proficient hepatic cells. This review will summarize current knowledge on the differentiation of hAEC into liver cells and their potential therapeutic application.


Subject(s)
Amnion/cytology , Cell Differentiation , Cell Transplantation , Epithelial Cells/physiology , Liver Diseases/therapy , Animals , Humans , Liver/cytology , Regenerative Medicine
15.
Methods Mol Biol ; 1506: 3-16, 2017.
Article in English | MEDLINE | ID: mdl-27830542

ABSTRACT

Orthotopic liver transplantation remains the only proven cure for end-stage liver failure. Despite significant advances in the field, the clinical demand for donor organs far outweighs the supply. Hepatocyte transplantation has been proposed as an alternative approach to whole liver transplant in select diseases. Several international centers have reported experimental trials of human hepatocyte transplantation in acute liver failure and liver-based metabolic disorders. This chapter provides an introduction to hepatocyte transplantation from both a technical and clinical perspective. We will also focus on the special needs of pediatric patients, since historically the majority of clinical hepatocyte transplants have involved infants and children.


Subject(s)
Cell Transplantation/methods , End Stage Liver Disease/surgery , Hepatocytes/transplantation , Liver Failure, Acute/surgery , Liver Transplantation/methods , Adolescent , Cell Transplantation/adverse effects , Child , Child, Preschool , Humans , Infant , Liver Transplantation/trends
16.
J Hepatol ; 66(5): 987-1000, 2017 05.
Article in English | MEDLINE | ID: mdl-28027971

ABSTRACT

BACKGROUND & AIMS: Hepatocyte transplantation partially corrects genetic disorders and has been associated anecdotally with reversal of acute liver failure. Monitoring for graft function and rejection has been difficult, and has contributed to limited graft survival. Here we aimed to use preparative liver-directed radiation therapy, and continuous monitoring for possible rejection in an attempt to overcome these limitations. METHODS: Preparative hepatic irradiation was examined in non-human primates as a strategy to improve engraftment of donor hepatocytes, and was then applied in human subjects. T cell immune monitoring was also examined in human subjects to assess adequacy of immunosuppression. RESULTS: Porcine hepatocyte transplants engrafted and expanded to comprise up to 15% of irradiated segments in immunosuppressed monkeys preconditioned with 10Gy liver-directed irradiation. Two patients with urea cycle deficiencies had early graft loss following hepatocyte transplantation; retrospective immune monitoring suggested the need for additional immunosuppression. Preparative radiation, anti-lymphocyte induction, and frequent immune monitoring were instituted for hepatocyte transplantation in a 27year old female with classical phenylketonuria. Post-transplant liver biopsies demonstrated multiple small clusters of transplanted cells, multiple mitoses, and Ki67+ hepatocytes. Mean peripheral blood phenylalanine (PHE) level fell from pre-transplant levels of 1343±48µM (normal 30-119µM) to 854±25µM (treatment goal ≤360µM) after transplant (36% decrease; p<0.0001), despite transplantation of only half the target number of donor hepatocytes. PHE levels remained below 900µM during supervised follow-up, but graft loss occurred after follow-up became inconsistent. CONCLUSIONS: Radiation preconditioning and serial rejection risk assessment may produce better engraftment and long-term survival of transplanted hepatocytes. Hepatocyte xenografts engraft for a period of months in non-human primates and may provide effective therapy for patients with acute liver failure. LAY SUMMARY: Hepatocyte transplantation can potentially be used to treat genetic liver disorders but its application in clinical practice has been impeded by inefficient hepatocyte engraftment and the inability to monitor rejection of transplanted liver cells. In this study, we first show in non-human primates that pretreatment of the host liver with radiation improves the engraftment of transplanted liver cells. We then used this knowledge in a series of clinical hepatocyte transplants in patients with genetic liver disorders to show that radiation pretreatment and rejection risk monitoring are safe and, if optimized, could improve engraftment and long-term survival of transplanted hepatocytes in patients.


Subject(s)
Graft Rejection , Hepatocytes/transplantation , Liver/radiation effects , Transplantation Conditioning , Adult , Animals , Female , Humans , Liver Diseases/therapy , Macaca fascicularis , Male , Swine , Transplantation, Heterologous
17.
Curr Transplant Rep ; 4(4): 280-289, 2017 Dec.
Article in English | MEDLINE | ID: mdl-29732274

ABSTRACT

PURPOSE OF REVIEW: Significant recent scientific developments have occurred in the field of liver repopulation and regeneration. While techniques to facilitate liver repopulation with donor hepatocytes and different cell sources have been studied extensively in the laboratory, in recent years clinical hepatocyte transplantation (HT) and liver repopulation trials have demonstrated new disease indications and also immunological challenges that will require the incorporation of a fresh look and new experimental approaches. RECENT FINDINGS: Growth advantage and regenerative stimulus are necessary to allow donor hepatocytes to proliferate. Current research efforts focus on mechanisms of donor hepatocyte expansion in response to liver injury/preconditioning. Moreover, latest clinical evidence shows that important obstacles to HT include optimizing engraftment and limited duration of effectiveness, with hepatocytes being lost to immunological rejection. We will discuss alternatives for cellular rejection monitoring, as well as new modalities to follow cellular graft function and near-to-clinical cell sources. SUMMARY: HT partially corrects genetic disorders for a limited period of time and has been associated with reversal of ALF. The main identified obstacles that remain to make HT a curative approach include improving engraftment rates, and methods for monitoring cellular graft function and rejection. This review aims to discuss current state-of-the-art in clinical HT and provide insights into innovative approaches taken to overcome these obstacles.

18.
Hum Immunol ; 77(9): 734-9, 2016 Sep.
Article in English | MEDLINE | ID: mdl-27476049

ABSTRACT

Despite routine liver transplantation and supporting medical therapies, thousands of patients currently wait for an organ and there is an unmet need for more refined and widely available regenerative strategies to treat liver diseases. Cell transplants attempt to maximize the potential for repair and/or regeneration in liver and other organs. Over 40years of laboratory pre-clinical research and 25years of clinical procedures have shown that certain liver diseases can be treated by the infusion of isolated cells (hepatocyte transplant). However, like organ transplants, hepatocyte transplant suffers from a paucity of tissues useful for cell production. Alternative sources have been investigated, yet with limited success. The tumorigenic potential of pluripotent stem cells together with their primitive level of hepatic differentiation, have limited the use of stem cell populations. Stem cell sources from human placenta, and the amnion tissue in particular are receiving renewed interest in the field of regenerative medicine. Unlike pluripotent stem cells, human amnion epithelial (AE) cells are easily available without ethical or religious concerns; they do not express telomerase and are not immortal or tumorigenic when transplanted. In addition, AE cells have been reported to express genes normally expressed in mature liver, when transplanted into the liver. Moreover, because of the possibility of an immune-privileged status related to their expression of HLA-G, it might be possible to transplant human AE cells without immunosuppression of the recipient.


Subject(s)
Amnion/cytology , Cell- and Tissue-Based Therapy , Epithelial Cells/transplantation , HLA-G Antigens/metabolism , Liver Diseases/therapy , Liver Regeneration , Liver/physiology , Adult Stem Cells/immunology , Adult Stem Cells/transplantation , Clinical Trials as Topic , Epithelial Cells/cytology , Epithelial Cells/metabolism , Female , Hepatocytes/immunology , Hepatocytes/transplantation , Humans , Immune Tolerance , Liver Diseases/immunology , Liver Transplantation
19.
J Clin Exp Hepatol ; 6(2): 87-93, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27493455

ABSTRACT

BACKGROUND: Primary human hepatocytes offer the best human in vitro model for studies on human liver cell metabolism. Investigators use a variety of different media supplements and matrix biocoatings and the type of culture system used may influence the outcome. OBJECTIVES: To optimize in vitro conditions for primary human hepatocytes with regard to bile acid synthesis. METHODS: Human hepatocytes were isolated and cultured on collagen type I or EHS matrigel in cell media with or without dexamethasone. The glucocorticoid receptor (GR) antagonist RU486 was used to elucidate the involvement of GR. RESULTS: Hepatocytes cultured on EHS matrigel produced more bile acids and expressed higher levels of cholesterol 7α-hydroxylase (CYP7A1) than cells cultured on rat tail collagen. Supplementation with dexamethasone increased the formation of cholic acid (CA) and decreased chenodeoxycholic acid formation. In line with these results, the mRNA expression of sterol 12α-hydroxylase (CYP8B1) increased following dexamethasone treatment. Surprisingly, the mRNA expression of CYP7A1 and CYP27A1 was not increased to the same extent. By using the GR antagonist RU486, we concluded that CYP8B1 induction is mediated via a GR-independent pathway. An altered expression of retinoid-related orphan receptor (ROR) α and ROR α target gene Glucose-6-phosphatase (G6Pase) suggests that ROR α signaling may regulate CYP8B1 expression. CONCLUSION: Primary human hepatocytes have an increased bile acid synthesis rate when cultured on matrigel as compared to collagen. Exposure to glucocorticoid hormones stimulates the expression of CYP8B1, leading to an increased formation of CA and alteration of the bile acid composition. The effect is most likely mediated through a GR-independent pathway, possibly through ROR α.

20.
Curr Protoc Stem Cell Biol ; 37: 1E.10.1-1E.10.13, 2016 05 12.
Article in English | MEDLINE | ID: mdl-27171794

ABSTRACT

Different cell types can be isolated from human placental tissues, and some have been reported to retain phenotypic plasticity and characteristics that make them a promising source of cells for regenerative medicine. Among these are human amnion epithelial cells (hAECs). Adoption of current good manufacturing practices (cGMP) and enhanced quality control is essential when isolating hAECs in order to deliver a safe and effective cellular product for clinical purposes. This unit describes a detailed protocol for selective isolation of hAECs from human term placenta with little to no contamination by other cell types. A method for characterizing the heterogeneity of the hAEC suspension is also provided. The resulting cell product will be useful for clinical as well as basic research applications. © 2016 by John Wiley & Sons, Inc.


Subject(s)
Amnion/cytology , Cell Separation/methods , Cell Separation/standards , Epithelial Cells/cytology , Female , Flow Cytometry , Humans , Placenta/cytology , Pregnancy
SELECTION OF CITATIONS
SEARCH DETAIL
...