Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 14 de 14
Filter
Add more filters










Publication year range
1.
Comp Med ; 74(2): 55-69, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38508697

ABSTRACT

Disturbances in gut microbiota are prevalent in inflammatory bowel disease (IBD), which includes ulcerative colitis (UC). However, whether these disturbances contribute to development of the disease or are a result of the disease is unclear. In pairs of human twins discordant for IBD, the healthy twin has a higher risk of developing IBD and a gut microbiota that is more similar to that of IBD patients as compared with healthy individuals. Furthermore, appropriate medical treatment may mitigate these disturbances. To study the correlation between microbiota and IBD, we transferred stool samples from a discordant human twin pair: one twin being healthy and the other receiving treatment for UC. The stool samples were transferred from the disease-discordant twins to germ-free pregnant dams. Colitis was induced in the offspring using dextran sodium sulfate. As compared with offspring born to mice dams inoculated with stool from the healthy cotwin, offspring born to dams inoculated with stool from the UC-afflicted twin had a lower disease activity index, less gut inflammation, and a microbiota characterized by higher α diversity and a more antiinflammatory profile that included the presence and higher abundance of antiinflammatory species such as Akkermansia spp., Bacteroides spp., and Parabacteroides spp. These findings suggest that the microbiota from the healthy twin may have had greater inflammatory properties than did that of the twin undergoing UC treatment.


Subject(s)
Colitis, Ulcerative , Gastrointestinal Microbiome , Animals , Colitis, Ulcerative/microbiology , Humans , Mice , Female , Germ-Free Life , Dextran Sulfate/toxicity , Feces/microbiology , Pregnancy , Male , Disease Models, Animal , Fecal Microbiota Transplantation
2.
RSC Adv ; 13(47): 33159-33166, 2023 Nov 07.
Article in English | MEDLINE | ID: mdl-37964901

ABSTRACT

Although aquaculture is a major player in current and future food production, the routine use of antibiotics provides ample ground for development of antibiotic resistance. An alternative route to disease control is the use of probiotic bacteria such as the marine bacteria Phaeobacter inhibens which produces tropodithietic acid (TDA) that inhibit pathogens without affecting the fish. Improving conditions for the formation of biofilm and TDA-synthesis is a promising avenue for biocontrol in aquaculture. In this study, the biosynthesis of TDA by Phaeobacter inhibens grown on micro-structured polymeric surfaces in micro-fluidic flow-cells is investigated. The formation of biofilms on three surface topographies; hexagonal micro-pit-arrays, hexagonal micro-pillar-arrays, and planar references is investigated. The biomass on these surfaces is measured by a non-invasive confocal microscopy 3D imaging technique, and the corresponding TDA production is monitored by liquid chromatography mass spectrometry (LC-MS) in samples collected from the outlets of the microfluidic channels. Although all surfaces support growth of P. inhibens, biomass appears to be decoupled from total TDA biosynthesis as the micro-pit-arrays generate the largest biomass while the micro-pillar-arrays produce significantly higher amounts of TDA. The findings highlight the potential for optimized micro-structured surfaces to maintain biofilms of probiotic bacteria for sustainable aquacultures.

3.
Appl Environ Microbiol ; 89(10): e0118523, 2023 10 31.
Article in English | MEDLINE | ID: mdl-37791757

ABSTRACT

Humans consume alginate in the form of seaweed, food hydrocolloids, and encapsulations, making the digestion of this mannuronic acid (M) and guluronic acid (G) polymer of key interest for human health. To increase knowledge on alginate degradation in the gut, a gene catalog from human feces was mined for potential alginate lyases (ALs). The predicted ALs were present in nine species of the Bacteroidetes phylum, of which two required supplementation of an endo-acting AL, expected to mimic cross-feeding in the gut. However, only a new isolate grew on alginate. Whole-genome sequencing of this alginate-utilizing isolate suggested that it is a new Bacteroides ovatus strain harboring a polysaccharide utilization locus (PUL) containing three ALs of families: PL6, PL17, and PL38. The BoPL6 degraded polyG to oligosaccharides of DP 1-3, and BoPL17 released 4,5-unsaturated monouronate from polyM. BoPL38 degraded both alginates, polyM, polyG, and polyMG, in endo-mode; hence, it was assumed to deliver oligosaccharide substrates for BoPL6 and BoPL17, corresponding well with synergistic action on alginate. BoPL17 and BoPL38 crystal structures, determined at 1.61 and 2.11 Å, respectively, showed (α/α)6-barrel + anti-parallel ß-sheet and (α/α)7-barrel folds, distinctive for these PL families. BoPL17 had a more open active site than the two homologous structures. BoPL38 was very similar to the structure of an uncharacterized PL38, albeit with a different triad of residues possibly interacting with substrate in the presumed active site tunnel. Altogether, the study provides unique functional and structural insights into alginate-degrading lyases of a PUL in a human gut bacterium.IMPORTANCEHuman ingestion of sustainable biopolymers calls for insight into their utilization in our gut. Seaweed is one such resource with alginate, a major cell wall component, used as a food hydrocolloid and for encapsulation of pharmaceuticals and probiotics. Knowledge is sparse on the molecular basis for alginate utilization in the gut. We identified a new Bacteroides ovatus strain from human feces that grew on alginate and encoded three alginate lyases in a gene cluster. BoPL6 and BoPL17 show complementary specificity toward guluronate (G) and mannuronate (M) residues, releasing unsaturated oligosaccharides and monouronic acids. BoPL38 produces oligosaccharides degraded by BoPL6 and BoPL17 from both alginates, G-, M-, and MG-substrates. Enzymatic and structural characterization discloses the mode of action and synergistic degradation of alginate by these alginate lyases. Other bacteria were cross-feeding on alginate oligosaccharides produced by an endo-acting alginate lyase. Hence, there is an interdependent community in our guts that can utilize alginate.


Subject(s)
Alginates , Bacteria , Humans , Alginates/metabolism , Bacteria/metabolism , Oligosaccharides/metabolism , Polysaccharide-Lyases/metabolism , Substrate Specificity
4.
ISME J ; 16(3): 774-787, 2022 03.
Article in English | MEDLINE | ID: mdl-34593997

ABSTRACT

Trophic interactions play a central role in driving microbial community assembly and function. In gut or soil ecosystems, successful inoculants are always facilitated by efficient colonization; however, the metabolite exchanges between inoculants and resident bacteria are rarely studied, particularly in the rhizosphere. Here, we used bioinformatic, genetic, transcriptomic, and metabonomic analyses to uncover syntrophic cooperation between inoculant (Bacillus velezensis SQR9) and plant-beneficial indigenous Pseudomonas stutzeri in the cucumber rhizosphere. We found that the synergistic interaction of these two species is highly environmental dependent, the emergence of syntrophic cooperation was only evident in a static nutrient-rich niche, such as pellicle biofilm in addition to the rhizosphere. Our results identified branched-chain amino acids (BCAAs) biosynthesis pathways are involved in syntrophic cooperation. Genome-scale metabolic modeling and metabolic profiling also demonstrated metabolic facilitation among the bacterial strains. In addition, biofilm matrix components from Bacillus were essential for the interaction. Importantly, the two-species consortium promoted plant growth and helped plants alleviate salt stress. In summary, we propose a mechanism in which synergic interactions between a biocontrol bacterium and a partner species promote plant health.


Subject(s)
Bacillus , Microbiota , Pseudomonas stutzeri , Bacillus/genetics , Bacillus/metabolism , Plant Roots/microbiology , Pseudomonas stutzeri/genetics , Rhizosphere , Soil Microbiology
5.
mSystems ; 6(1)2021 Feb 23.
Article in English | MEDLINE | ID: mdl-33622852

ABSTRACT

Bacillus subtilis produces a wide range of secondary metabolites providing diverse plant growth-promoting and biocontrol abilities. These secondary metabolites include nonribosomal peptides with strong antimicrobial properties, causing either cell lysis, pore formation in fungal membranes, inhibition of certain enzymes, or bacterial protein synthesis. However, the natural products of B. subtilis are mostly studied either in laboratory strains or in individual isolates, and therefore, a comparative overview of secondary metabolites from various environmental B. subtilis strains is missing. In this study, we isolated 23 B. subtilis strains from 11 sampling sites, compared the fungal inhibition profiles of wild types and their nonribosomal peptide mutants, followed the production of targeted lipopeptides, and determined the complete genomes of 13 soil isolates. We discovered that nonribosomal peptide production varied among B. subtilis strains coisolated from the same soil samples. In vitro antagonism assays revealed that biocontrol properties depend on the targeted plant pathogenic fungus and the tested B. subtilis isolate. While plipastatin alone is sufficient to inhibit Fusarium spp., a combination of plipastatin and surfactin is required to hinder growth of Botrytis cinerea Detailed genomic analysis revealed that altered nonribosomal peptide production profiles in specific isolates are due to missing core genes, nonsense mutation, or potentially altered gene regulation. Our study combines microbiological antagonism assays with chemical nonribosomal peptide detection and biosynthetic gene cluster predictions in diverse B. subtilis soil isolates to provide a broader overview of the secondary metabolite chemodiversity of B. subtilis IMPORTANCE Secondary or specialized metabolites with antimicrobial activities define the biocontrol properties of microorganisms. Members of the Bacillus genus produce a plethora of secondary metabolites, of which nonribosomally produced lipopeptides in particular display strong antifungal activity. To facilitate the prediction of the biocontrol potential of new Bacillus subtilis isolates, we have explored the in vitro antifungal inhibitory profiles of recent B. subtilis isolates, combined with analytical natural product chemistry, mutational analysis, and detailed genome analysis of biosynthetic gene clusters. Such a comparative analysis helped to explain why selected B. subtilis isolates lack the production of certain secondary metabolites.

6.
Beilstein J Org Chem ; 16: 2983-2998, 2020.
Article in English | MEDLINE | ID: mdl-33335606

ABSTRACT

Secondary metabolites provide Bacillus subtilis with increased competitiveness towards other microorganisms. In particular, nonribosomal peptides (NRPs) have an enormous antimicrobial potential by causing cell lysis, perforation of fungal membranes, enzyme inhibition, or disruption of bacterial protein synthesis. This knowledge was primarily acquired in vitro when B. subtilis was competing with other microbial monocultures. However, our understanding of the true ecological role of these small molecules is limited. In this study, we have established soil-derived semisynthetic mock communities containing 13 main genera and supplemented them with B. subtilis P5_B1 WT, the NRP-deficient strain sfp, or single-NRP mutants incapable of producing surfactin, plipastatin, or bacillaene. Through 16S amplicon sequencing, it was revealed that the invasion of NRP-producing B. subtilis strains had no major impact on the bacterial communities. Still, the abundance of the two genera Lysinibacillus and Viridibacillus was reduced. Interestingly, this effect was diminished in communities supplemented with the NRP-deficient strain. Growth profiling of Lysinibacillus fusiformis M5 exposed to either spent media of the B. subtilis strains or pure surfactin indicated the sensitivity of this strain towards the biosurfactant surfactin. Our study provides a more in-depth insight into the influence of B. subtilis NRPs on semisynthetic bacterial communities and helps to understand their ecological role.

7.
J Aquat Anim Health ; 32(1): 21-27, 2020 03.
Article in English | MEDLINE | ID: mdl-31986229

ABSTRACT

The genetic diversity of Vibrio anguillarum pJM1-like plasmids was investigated. Plasmids were isolated from 18 V. anguillarum serovar O1 strains collected from different geographic locations and fish species. The plasmids were sequenced and compared with the complete sequence of the published virulence plasmid pJM1. All 18 strains contained pJM1-like plasmids with approximately 65 kbp and all plasmids encoded the virulence genes responsible for the anguibactin iron sequestering system. The plasmids were highly conserved but minor differences were observed in some genes. A single nucleotide polymorphisms (SNPs) analysis showed 0-11 nucleotide variations between each of the 18 plasmids and the pJM1 plasmid. Compared with the sequence of pJM1, nonsynonymous SNPs were identified in fatC, angR, angL, pJM1_p19, and angE. In particular, a mutation found in 15 out of 18 sequenced plasmids in angR has previously been linked to hyperproduction of anguibactin and was found in all the European isolates. However, overall the pJM1-like plasmids isolated from V. anguillarum serovar O1 exhibited a high degree of conservation regardless of their geographical origin or fish species.


Subject(s)
DNA, Bacterial/analysis , Fish Diseases/microbiology , Plasmids/analysis , Vibrio Infections/veterinary , Vibrio/genetics , Animals , Mutation , Polymorphism, Single Nucleotide , Sequence Analysis, DNA/veterinary , Vibrio Infections/microbiology
8.
PLoS One ; 13(3): e0193870, 2018.
Article in English | MEDLINE | ID: mdl-29513739

ABSTRACT

Digital dermatitis (DD) is one of the main causes of lameness in dairy cattle worldwide, and it is frequently reported in high-yielding, free stall dairy herds from regions with a temperate climate. However, DD is also observed with high prevalence in grazing cattle with a low milk yield in tropical regions. To clarify whether these differences have an impact on the etiology of the disease, we studied DD lesions from all year round grazing cattle of mixed breed in Brazil using high-throughput 16S rRNA gene sequencing and fluorescent in situ hybridization. The study included samples from 66 skin lesions and 5 healthy skins collected from five farms. Both techniques showed Treponema spp. to be the most abundant bacteria, present in all but one of the samples with minimal epidermal alterations. We identified eleven different Treponema strains belonging to the six major phylotypes of Treponema which have all previously been identified in DD lesions. Furthermore, we identify Dichelobacter nodosus in DD lesions by gene sequencing and also by fluorescent in situ hybridization in almost half of biopsy specimens in areas with mild epithelial damage and together with Treponema. The present data support the hypothesis that Treponema constitutes the main pathogen responsible for DD, independent of the environment and region where cows are kept, and it further suggests D. nodosus as another potentially important pathogen.


Subject(s)
Animal Husbandry/methods , Cattle Diseases/microbiology , Dichelobacter nodosus/pathogenicity , Digital Dermatitis/microbiology , Gram-Negative Bacterial Infections/veterinary , Treponemal Infections/veterinary , Animals , Biopsy , Brazil/epidemiology , Cattle , Cattle Diseases/epidemiology , Cattle Diseases/pathology , DNA, Bacterial/genetics , DNA, Bacterial/isolation & purification , Dichelobacter nodosus/genetics , Dichelobacter nodosus/isolation & purification , Digital Dermatitis/epidemiology , Digital Dermatitis/pathology , Feeding Behavior , Female , Gram-Negative Bacterial Infections/epidemiology , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/pathology , Herbivory , In Situ Hybridization, Fluorescence , Lameness, Animal/epidemiology , Lameness, Animal/microbiology , Lameness, Animal/pathology , Ribotyping , Treponema/genetics , Treponema/isolation & purification , Treponemal Infections/epidemiology , Treponemal Infections/microbiology , Treponemal Infections/pathology
9.
Minerva Anestesiol ; 84(2): 168-177, 2018 02.
Article in English | MEDLINE | ID: mdl-28749093

ABSTRACT

BACKGROUND: Anterior cruciate ligament reconstruction (ACL-RC) is often associated with moderate to severe postoperative pain even with a multimodal analgesic regimen. We aimed to compare the analgesic efficacy of low volume saphenous-obturator block with placebo and femoral-obturator block in patients undergoing ACL-RC. METHODS: In a randomized controlled trial eighty-two patients undergoing ACL-RC with hamstring autograft were allocated to either low volume saphenous-obturator block, placebo block or femoral-obturator block. Ropivacaine 0.75% was used for active blocks and saline for placebo. Primary outcome was pain-scores at rest quantified as area-under-the-curve 0-6 hr postoperatively. Secondary outcomes were postoperative opioid consumption and pain localization in the knee. RESULTS: No statistical difference existed between groups in area-under-the-curve 6 hr pain-scores. However, pain-scores were significantly lower in the two ropivacaine groups compared to placebo at emergence t=0 (P<0.018), at t=5 (P<0.042) and at t=6 hours (P<0.002) postoperatively. Furthermore, ropivacaine blocks exhibited significantly reduced total opioid consumption (15.81 and 18.44 mg) postoperatively compared with placebo (26.38 mg) (P<0.018). Patients receiving ropivacaine blocks localized pain in the posterolateral knee, whereas placebo block patients reported anteromedial and central pain. Other secondary outcomes were similar between groups. CONCLUSIONS: Low volume saphenous-obturator block is significantly more effective than placebo in reducing both early and late pain-scores as well as postoperative opioid consumption in patients undergoing ACL-RC. No statistical difference existed when comparing low volume saphenous-obturator block to femoral-obturator block regarding early and late pain-scores and postoperative opioid consumption.


Subject(s)
Anterior Cruciate Ligament Reconstruction , Nerve Block/methods , Adult , Double-Blind Method , Female , Femoral Nerve , Humans , Male , Obturator Nerve
10.
Appl Environ Microbiol ; 83(11)2017 06 01.
Article in English | MEDLINE | ID: mdl-28363959

ABSTRACT

At present, very little information exists regarding what role the environmental slurry may play as an infection reservoir and/or route of transmission for bovine digital dermatitis (DD), a disease which is a global problem in dairy herds. To investigate whether DD-related bacteria belong to the indigenous microbiota of the dairy herd environment, we used deep amplicon sequencing of the 16S rRNA gene in 135 slurry samples collected from different sites in 22 dairy farms, with and without DD-infected cows. Both the general bacterial populations and digital dermatitis-associated Treponema were targeted in this study. The results revealed significant differences in the bacterial communities between the herds, with only 12 bacterial taxa shared across at least 80% of all the individual samples. These differences in the herd microbiota appeared to reflect mainly between-herd variation. Not surprisingly, the slurry was dominated by ubiquitous gastrointestinal bacteria, such as Ruminococcaceae and Lachnospiraceae Despite the low relative abundance of spirochetes, which ranged from 0 to 0.6%, we were able to detect small amounts of bacterial DNA from DD-associated treponemes in the slurry. However, the DD-associated Treponema spp. were detected only in samples from herds with reported DD problems. These data indicate that treponemes involved in the pathogenesis of DD are not part of the normal environmental microflora in dairy herds without clinical DD and, consequently, that slurry is not a primary reservoir of infection.IMPORTANCE Bovine digital dermatitis (DD), a dermal disease which causes lameness in dairy cattle, is a serious problem worldwide. To control this disease, the infection reservoirs and transmission routes of DD pathogens need to be clarified. The dairy herd slurry may be a pathogen reservoir of DD-associated bacteria. The rationale for the present study was, therefore, to examine whether DD-associated bacteria are always present in slurry or if they are found only in DD-afflicted herds. The results strongly indicated that DD Treponema spp. are not part of the indigenous slurry and, therefore, do not comprise an infection reservoir in healthy herds. This study applied next-generation sequencing technology to decipher the microbial compositions of environmental slurry of dairy herds with and without digital dermatitis.


Subject(s)
Bacteria/isolation & purification , Cattle Diseases/microbiology , Digital Dermatitis/microbiology , Disease Reservoirs/microbiology , Microbiota , Soil Microbiology , Animals , Bacteria/classification , Bacteria/genetics , Cattle , Phylogeny
11.
Appl Microbiol Biotechnol ; 101(9): 3605-3615, 2017 May.
Article in English | MEDLINE | ID: mdl-28204884

ABSTRACT

We have previously shown that galacto-rhamnogalacturonan fibers can be enzymatically extracted from potato pulp and that these fibers have potential for exerting a prebiotic effect in piglets. The spore-forming Bacillus species are widely used as probiotics in feed supplements for pigs. In this study, we evaluated the option for further functionalizing Bacillus feed supplements by selecting strains possessing the enzymes required for extraction of the potentially prebiotic fibers. We established that it would require production and secretion of pectin lyase and/or polygalacturonase but no or limited secretion of galactanase and ß-galactosidase. By screening a library of 158 Bacillus species isolated from feces and soil, we demonstrated that especially strains of Bacillus amyloliquefaciens, Bacillus subtilis, and Bacillus mojavensis have the necessary enzyme profile and thus the capability to degrade polygalacturonan. Using an in vitro porcine gastrointestinal model system, we revealed that specifically strains of B. mojavensis were able to efficiently release galacto-rhamnogalacturonan from potato pulp under simulated gastrointestinal conditions. The work thus demonstrated the feasibility of producing prebiotic fibers via a feed containing Bacillus spores and potato pulp and identified candidates for future in vivo evaluation in piglets.


Subject(s)
Bacillus/enzymology , Bacillus/metabolism , Dietary Supplements , Pectins/metabolism , Prebiotics , Solanum tuberosum/metabolism , Bacillus/growth & development , Bacillus/isolation & purification , Feces/microbiology , Gastrointestinal Tract/microbiology , Models, Biological , Soil Microbiology
12.
Vet Microbiol ; 186: 139-49, 2016 Apr 15.
Article in English | MEDLINE | ID: mdl-27016768

ABSTRACT

Although treponemes are consistently identified in tissue from bovine digital dermatitis (DD) lesions, the definitive etiology of this debilitating polymicrobial disease is still unresolved. To study the microbiomes of 27 DD-infected and 10 healthy interdigital skin samples, we used a combination of different molecular methods. Deep sequencing of the 16S rRNA gene variable regions V1-V2 showed that Treponema, Mycoplasma, Fusobacterium and Porphyromonas were the genera best differentiating the DD samples from the controls. Additional deep sequencing analysis of the most abundant genus, Treponema, targeting another variable region of the 16S rRNA gene, V3-V4, identified 15 different phylotypes, among which Treponema phagedenis-like and Treponema refringens-like species were the most abundant. Although the presence of Treponema spp., Fusobacterium necrophorum and Porphyromonas levii was confirmed by fluorescence in situ hybridization (FISH), the results for Mycoplasma spp. were inconclusive. Extensive treponemal epidermal infiltration, constituting more than 90% of the total bacterial population, was observed in 24 of the 27 DD samples. F. necrophorum and P. levii were superficially located in the epidermal lesions and were present in only a subset of samples. RT-qPCR analysis showed that treponemes were also actively expressing a panel of virulence factors at the site of infection. Our results further support the hypothesis that species belonging to the genus Treponema are major pathogens of DD and also provide sufficient clues to motivate additional research into the role of M. fermentans, F. necrophorum and P. levii in the etiology of DD.


Subject(s)
Cattle Diseases/microbiology , Digital Dermatitis/microbiology , Gram-Negative Bacteria/physiology , Gram-Negative Bacterial Infections/veterinary , Skin/microbiology , Animals , Biodiversity , Cattle , Cattle Diseases/pathology , Gram-Negative Bacteria/genetics , Gram-Negative Bacteria/isolation & purification , Gram-Negative Bacterial Infections/microbiology , Gram-Negative Bacterial Infections/pathology , Microbiota/genetics , RNA, Ribosomal, 16S/genetics , Virulence Factors/genetics
13.
PLoS One ; 11(1): e0147373, 2016.
Article in English | MEDLINE | ID: mdl-26824607

ABSTRACT

There is an increasing demand for non-antibiotics solutions to control infectious disease in intensive pig production. Here, one such alternative, namely pig antibodies purified from slaughterhouse blood was investigated in order to elucidate its potential usability to control post-weaning diarrhoea (PWD), which is one of the top indications for antibiotics usage in the pig production. A very cost-efficient and rapid one-step expanded bed adsorption (EBA) chromatography procedure was used to purify pig immunoglobulin G from slaughterhouse pig plasma (more than 100 litres), resulting in >85% pure pig IgG (ppIgG). The ppIgG thus comprised natural pig immunoglobulins and was subsequently shown to contain activity towards four pig-relevant bacterial strains (three different types of Escherichia coli and one type of Salmonella enterica) but not towards a fish pathogen (Yersinia ruckeri), and was demonstrated to inhibit the binding of the four pig relevant bacteria to a pig intestinal cell line (IPEC-J2). Finally it was demonstrated in an in vivo weaning piglet model for intestinal colonization with an E. coli F4+ challenge strain that ppIgG given in the feed significantly reduced shedding of the challenge strain, reduced the proportion of the bacterial family Enterobacteriaceae, increased the proportion of families Enterococcoceae and Streptococcaceae and generally increased ileal microbiota diversity. Conclusively, our data support the idea that natural IgG directly purified from pig plasma and given as a feed supplement can be used in modern swine production as an efficient and cost-effective means for reducing both occurrence of PWD and antibiotics usage and with a potential for the prevention and treatment of other intestinal infectious diseases even if the causative agent might not be known.


Subject(s)
Anti-Bacterial Agents/pharmacology , Diarrhea/veterinary , Dietary Supplements , Escherichia coli Infections/veterinary , Immunoglobulin G/pharmacology , Intestinal Diseases/veterinary , Swine Diseases/prevention & control , Animal Feed , Animals , Animals, Newborn , Anti-Bacterial Agents/blood , Anti-Bacterial Agents/isolation & purification , Bacterial Adhesion/drug effects , Biodiversity , Cell Line , Diarrhea/immunology , Diarrhea/microbiology , Diarrhea/prevention & control , Epithelial Cells/drug effects , Epithelial Cells/immunology , Epithelial Cells/microbiology , Escherichia coli/drug effects , Escherichia coli/growth & development , Escherichia coli Infections/immunology , Escherichia coli Infections/microbiology , Escherichia coli Infections/prevention & control , Immunoglobulin G/blood , Immunoglobulin G/isolation & purification , Intestinal Diseases/immunology , Intestinal Diseases/microbiology , Intestinal Diseases/prevention & control , Intestines/drug effects , Intestines/immunology , Intestines/microbiology , Microbial Sensitivity Tests , Microbiota/drug effects , Salmonella enterica/drug effects , Salmonella enterica/growth & development , Swine , Swine Diseases/immunology , Swine Diseases/microbiology , Weaning , Yersinia ruckeri/growth & development
14.
Appl Microbiol Biotechnol ; 99(10): 4245-53, 2015 May.
Article in English | MEDLINE | ID: mdl-25434812

ABSTRACT

Enzymatic conversion of pectinaceous biomasses such as potato and sugar beet pulp at high temperatures is advantageous as it gives rise to lower substrate viscosity, easier mixing, and increased substrate solubility and lowers the risk of contamination. Such high-temperature processing requires development of thermostable enzymes. Talaromyces stipitatus was found to secrete endo-1,4-ß-galactanase when grown on sugar beet pectin as sole carbon source. The mature protein contained 353 AA and the MW was estimated to 36.5 kDa. It was subjected to codon optimization and produced in Pichia pastoris in 2 l scale yielding 5.3 g. The optimal reaction condition for the endo-1,4-ß-galactanase was determined to be 46 °C at pH 4.5 at which the specific activity was estimated to be 6.93 µmol/min/mg enzyme with half-lives of 13 and 2 min at 55 and 60 °C, respectively. For enhancement of the half-life of TSGAL, nine single amino acid residues were selected for site-directed mutagenesis on the basis of semi-rational design. Of these nine mutants, G305A showed half-lives of 114 min at 55 °C and 15 min at 60 °C, respectively. This is 8.6-fold higher than that of the TSGAL at 55 °C, whereas the other mutants displayed moderate positive to negative changes in their half-lives.


Subject(s)
Fungal Proteins/chemistry , Fungal Proteins/genetics , Glycoside Hydrolases/chemistry , Glycoside Hydrolases/genetics , Talaromyces/enzymology , Amino Acid Sequence , Cloning, Molecular , Enzyme Stability , Fungal Proteins/metabolism , Glycoside Hydrolases/metabolism , Hot Temperature , Molecular Sequence Data , Mutagenesis, Site-Directed , Pichia/genetics , Pichia/metabolism , Protein Engineering , Substrate Specificity , Talaromyces/chemistry , Talaromyces/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...