Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21
Filter
Add more filters










Publication year range
1.
ACS Appl Bio Mater ; 6(11): 4662-4671, 2023 11 20.
Article in English | MEDLINE | ID: mdl-37902811

ABSTRACT

Recently, transdermal monitoring and drug delivery have gained much interest, owing to the introduction of the minimally invasive microneedle (MN) device. The advancement of electroactive MNs electrically assisted in the capture of biomarkers or the triggering of drug release. Recent works have combined conducting polymers (CPs) onto MNs owing to the soft nature of the polymers and their tunable ionic and electronic conductivity. Though CPs are reported to work safely in the body, their biocompatibility in the skin has been insufficiently investigated. Furthermore, during electrical biasing of CPs, they undergo reduction or oxidation, which in practical terms leads to release/exchange of ions, which could pose biological risks. This work investigates the viability and proliferation of skin cells upon exposure to an electrochemically biased MN pair comprising two differently doped poly(3,4-ethylenedioxy-thiophene) (PEDOT) polymers that have been designed for skin sampling use. The impact of biasing on human keratinocytes and dermal fibroblasts was determined at different initial cell seeding densities and incubation periods. Indirect testing was employed, whereby the culture media was first exposed to PEDOTs prior to the addition of this extract to cells. In all conditions, both unbiased and biased PEDOT extracts showed no cytotoxicity, but the viability and proliferation of cells cultured at a low cell seeding density were lower than those of the control after 48 h of incubation.


Subject(s)
Keratinocytes , Polymers , Humans , Cell Survival , Skin
2.
J Mater Chem B ; 11(22): 5021-5031, 2023 06 07.
Article in English | MEDLINE | ID: mdl-37226634

ABSTRACT

Skin sampling is a diagnostic procedure based on the analysis of extracted skin tissues and/or the observation of biomarkers in bodily fluids. Sampling using microneedles (MNs) that minimize invasiveness is gaining attention over conventional biopsy/blood lancet. In this study, new MNs for electrochemically assisted skin sampling are reported, specifically tailored for combined skin tissue biopsy and interstitial fluid (ISF) extraction. To overcome risks associated with using metal MNs, a highly electroactive, mechanically flexible, and biocompatible organic conducting polymer (CP) coated onto plastic is chosen as an alternative. Two different variants of doped poly(3,4-ethylenedioxythiophene) are coated on polymethyl methacrylate and used in combination as a MN pair with subsequent testing via a variety of electrochemical techniques to (i) give real-time information of the MN penetration depth into the skin, and (ii) yield new information on various salts present in the ISF. The MN skin sampler shows the ability to extract ions from the hydrated excised skin as a step towards in vivo ISF extraction. The presence of ions was analyzed using X-ray photoelectron spectroscopy. This added chemical information in conjunction with the existing biomarker analysis increases opportunity for disease/condition detection. For example, in the case of psoriasis, information about salt in the skin is invaluable in combination with pathogenic gene expression for diagnosis.


Subject(s)
Needles , Polymers , Bridged Bicyclo Compounds, Heterocyclic , Plastics
3.
Int J Mol Sci ; 24(1)2023 Jan 02.
Article in English | MEDLINE | ID: mdl-36614239

ABSTRACT

Fundamental knowledge about cell-surface interactions can be applied in the development of wound dressings and scaffolds to encourage wounds to heal. As surfaces produced with acid-functionalised monomers encourage keratinocyte adhesion, proliferation and migration, whilst amine functionalisation enhances fibroblast proliferation and migration in vitro, standard care wound dressings were plasma-coated with either acrylic acid or allylamine and applied to 6 mm excisional wounds on the backs of mice to test their effectiveness in vivo. At day 3, the rate of wound healing was increased in mice treated with dressings that were plasma-coated with allylamine compared to uncoated dressings, with a significantly reduced wound area. However, healing may be impaired following prolonged treatment with allylamine-functionalised dressings, with delayed re-epithelialisation and increased cellularisation of the wound site at later timepoints. Acrylic acid functionalisation, however, offered no early improvement in wound healing, but wounds treated with these dressings displayed increased collagen deposition at day 7 post wounding. These results suggest that plasma polymerisation may allow for the development of new dressings which can enhance wound closure by directing cell behaviour, but that the application of these dressings may require a timed approach to enhance specific phases of the wound healing response.


Subject(s)
Bandages , Wound Healing , Mice , Animals , Acrylates/pharmacology , Collagen
4.
J Chromatogr A ; 1691: 463813, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36709548

ABSTRACT

Over the past two decades significant technical advancement in the field of western blotting has been made possible through the utilization of microfluidic technologies. In this review we provide a critical overview of these advancements, highlighting the advantages and disadvantages of each approach. Particular attention is paid to the development of now commercially available systems, including those for single cell analysis. This review also discusses more recent developments, including algorithms for automation and/or improved quantitation, the utilization of different materials/chemistries, use of projection electrophoresis, and the development of triBlots. Finally, the review includes commentary on future advances in the field based on current developments, and the potential of these systems for use as point-of-care devices in healthcare.


Subject(s)
Microfluidic Analytical Techniques , Microfluidics , Point-of-Care Systems , Blotting, Western , Automation
5.
Int J Mol Sci ; 23(21)2022 Nov 07.
Article in English | MEDLINE | ID: mdl-36362441

ABSTRACT

There has been little understanding of acidification functionality in wound healing, highlighting the need to study the efficacy of wound acidification on wound closure and cellular activity in non-infected wounds. This study is focused on establishing the healing potential of wound acidification in non-infected wounds. Acidic buffers, constituting either phosphoric or citric acid, were employed to modify the physiological pH of non-infected full-thickness excisional murine wounds. Acidification of the wound by acidic buffers was found to be an effective strategy to improve wound healing. A significant improvement in wound healing parameters was observed as early as 2 days post-treatment with acidic buffers compared to controls, with faster rate of epithelialization, wound closure and higher levels of collagen at day 7. pH is shown to play a role in mediating the rate of wound healing, with acidic buffers formulated at pH 4 observed to stimulate faster recovery of wounded tissues than pH 6 buffers. Our study shows the importance of maintaining an acidic wound microenvironment at pH 4, which could be a potential therapeutic strategy for wound management.


Subject(s)
Re-Epithelialization , Wound Healing , Mice , Animals , Wound Healing/physiology , Collagen , Hydrogen-Ion Concentration , Skin/injuries
6.
Article in English | MEDLINE | ID: mdl-35074864

ABSTRACT

Wound healing requires a complex cascade of highly controlled and conserved cellular and molecular processes. These involve numerous cell types and extracellular matrix molecules regulated by the actin cytoskeleton. This microscopic network of filaments is present within the cytoplasm of all cells and provides the shape and mechanical support required for cell movement and proliferation. Here, an overview of the processes of wound healing are described from the perspective of the cell in relation to the actin cytoskeleton. Key points of discussion include the role of actin, its binding proteins, signaling pathways, and events that play significant roles in the phases of wound healing. The identification of cytoskeletal targets that can be used to manipulate and improve wound healing is included as an emerging area of focus that may inform future therapeutic approaches to improve healing of complex wounds.


Subject(s)
Actins , Cytoskeleton , Actin Cytoskeleton/metabolism , Actins/metabolism , Cell Movement , Wound Healing
7.
Int J Mol Sci ; 22(24)2021 Dec 08.
Article in English | MEDLINE | ID: mdl-34948000

ABSTRACT

Cutaneous squamous cell carcinoma (cSCC) accounts for 25% of cutaneous malignancies diagnosed in Caucasian populations. Surgical removal in combination with radiation and chemotherapy are effective treatments for cSCC. Nevertheless, the aggressive metastatic forms of cSCC still have a relatively poor patient outcome. Studies have linked actin cytoskeletal dynamics and the Wnt/ß-catenin signaling pathway as important modulators of cSCC pathogenesis. Previous studies have also shown that the actin-remodeling protein Flightless (Flii) is a negative regulator of cSCC. The aim of this study was to investigate if the functional effects of Flii on cSCC involve the Wnt/ß-catenin signaling pathway. Flii knockdown was performed using siRNA in a human late stage aggressive metastatic cSCC cell line (MET-1) alongside analysis of Flii genetic murine models of 3-methylcholanthrene induced cSCC. Flii was increased in a MET-1 cSCC cell line and reducing Flii expression led to fewer PCNA positive cells and a concomitant reduction in cellular proliferation and symmetrical division. Knockdown of Flii led to decreased ß-catenin and a decrease in the expression of the downstream effector of ß-catenin signaling protein SOX9. 3-Methylcholanthrene (MCA)-induced cSCC in Flii overexpressing mice showed increased markers of cancer metastasis including talin and keratin-14 and a significant increase in SOX9 alongside a reduction in Flii associated protein (Flap-1). Taken together, this study demonstrates a role for Flii in regulating proteins involved in cSCC proliferation and tumor progression and suggests a potential role for Flii in aggressive metastatic cSCC.


Subject(s)
Carcinoma, Squamous Cell/genetics , Microfilament Proteins/genetics , Skin Neoplasms/genetics , Trans-Activators/genetics , Up-Regulation , Wnt Signaling Pathway , Animals , Carcinoma, Squamous Cell/chemically induced , Cell Line, Tumor , Cell Proliferation , Disease Models, Animal , Female , Gene Expression Regulation, Neoplastic , Gene Knockdown Techniques , Humans , Methylcholanthrene/adverse effects , Mice , Skin Neoplasms/chemically induced
8.
Int J Mol Sci ; 22(15)2021 Jul 30.
Article in English | MEDLINE | ID: mdl-34361001

ABSTRACT

Epidermal progenitor cells divide symmetrically and asymmetrically to form stratified epidermis and hair follicles during late embryonic development. Flightless I (Flii), an actin remodelling protein, is implicated in Wnt/ß-cat and integrin signalling pathways that govern cell division. This study investigated the effect of altering Flii on the divisional orientation of epidermal progenitor cells (EpSCs) in the basal layer during late murine embryonic development and early adolescence. The effect of altering Flii expression on asymmetric vs. symmetric division was assessed in vitro in adult human primary keratinocytes and in vivo at late embryonic development stages (E16, E17 and E19) as well as adolescence (P21 day-old) in mice with altered Flii expression (Flii knockdown: Flii+/-, wild type: WT, transgenic Flii overexpressing: FliiTg/Tg) using Western blot and immunohistochemistry. Flii+/- embryonic skin showed increased asymmetrical cell division of EpSCs with an increase in epidermal stratification and elevated talin, activated-Itgb1 and Par3 expression. FliiTg/Tg led to increased symmetrical cell division of EpSCs with increased cell proliferation rate, an elevated epidermal SOX9, Flap1 and ß-cat expression, a thinner epidermis, but increased hair follicle number and depth. Flii promotes symmetric division of epidermal progenitor cells during murine embryonic development.


Subject(s)
Cell Division , Microfilament Proteins/genetics , Mouse Embryonic Stem Cells/metabolism , Skin/metabolism , Trans-Activators/genetics , Animals , Cells, Cultured , Keratinocytes/cytology , Keratinocytes/metabolism , Mice , Mice, Inbred BALB C , Microfilament Proteins/metabolism , Mouse Embryonic Stem Cells/cytology , SOX9 Transcription Factor/metabolism , Skin/embryology , Trans-Activators/metabolism , beta Catenin/metabolism
9.
Acta Biomater ; 128: 420-434, 2021 07 01.
Article in English | MEDLINE | ID: mdl-33857695

ABSTRACT

The increasing emergence of antibiotic resistance coupled with the limited effectiveness of current treatments highlights the need for the development of new treatment modalities. Silver nanoparticles (AgNPs) are a promising alternative with broad-spectrum antibacterial activity. However, the clinical translation of AgNPs have been hampered primarily due to the delivery of unsafe levels of silver ions (Ag+) resulting in cellular toxicity and their susceptibility to aggregation resulting in loss of efficacy. Here, we describe a safe and effective, thermo-responsive AgNP hydrogel that provides antibacterial effects in conjunction with wound promoting properties. Using a murine model of wound infection, we demonstrate that the applied AgNP hydrogel to the wound (12 µg silver) not only provides superior bactericidal activity but also reduces inflammation leading to accelerated wound closure when compared to industry-standard silver sulfadiazine (302 µg silver). The AgNP hydrogel-treatment significantly accelerated wound closure at day 4 post-infection (56 closure) compared to both blank hydrogel or Ag SD (74% and 91% closure respectively) with a concurrent increase in PCNA-positive proliferating cells corresponding with a significant 32% improvement in wound re-epithelization compared to the blank hydrogel. Treatment of infected wounds with AgNP hydrogel also decreased neutrophil infiltration, increased anti-inflammatory Ym-1 positive M2 macrophages, and reduced the number of caspase-1 positive apoptotic cells. Therefore, this novel multifunctional AgNP thermo-responsive hydrogel is potentially a safe and effective treatment at much lower concentration for the treatment of wound infections. STATEMENT OF SIGNIFICANCE: In this study, we describe the development of a multifunctional thermo-responsive hydrogel of ultrasmall silver nanoparticles (AgNPs) for controlled and optimized delivery of silver to infected wounds. The in vivo biological effects of the developed hydrogel showed significant S. aureus elimination from infected mouse wounds compared to a commercial antibacterial formulation. The developed AgNP hydrogel optimally regulates inflammatory responses to promote wound healing as indicated by increased cell proliferation and wound re-epithelization. Additionally, AgNP hydrogel shows significant potential in regulating neutrophil infiltration while increasing levels of anti-inflammatory M2 macrophages and reduces the number of apoptotic cells. Therefore, the multifunctional properties of the developed AgNP thermo-responsive hydrogel offers great clinical potential to control bacterial infections and promote wound healing.


Subject(s)
Metal Nanoparticles , Methicillin-Resistant Staphylococcus aureus , Wound Infection , Animals , Anti-Bacterial Agents/pharmacology , Hydrogels/pharmacology , Mice , Silver/pharmacology , Staphylococcus aureus , Wound Healing , Wound Infection/drug therapy
10.
Wound Repair Regen ; 29(3): 380-392, 2021 05.
Article in English | MEDLINE | ID: mdl-33655577

ABSTRACT

Stem cells have been shown to have potential as a new therapy for burns and promote wound healing through decreasing inflammation and increasing angiogenesis. Multipotent adult progenitor cells (MAPC® cells) are a subpopulation of bone marrow-derived stem cells with outstanding self-renewal and differentiation capacity. MAPC cells also secrete a wide range of cytokines which can affect cellular activities. This article aimed to examine the effects of MAPC cells treatment on burn injury repair using a mouse model of partial thickness burn injury. The immunomodulatory effect of MAPC cells was investigated in vitro using a simultaneous T-cell proliferation assay. Partial thickness burns were created on the dorsal surface of mice and MAPC cells were administered via intradermal injection to the wound margins 24 h post-burn injury. The burn tissues were analysed macroscopically to determine wound area and histologically assessed to determine wound width and rate of re-epithelialisation. Immunohistochemistry and ELISA were employed to assess cell proliferation, inflammation and angiogenesis and collagen deposition in the burn area. MAPC cells inhibit the proliferation of stimulated T cells in culture. Burns intradermally injected with MAPC cells showed a significant reduction in the macroscopic wound area, histologic wound width and had an increased rate of re-epithelialisation. Immunohistochemistry and ELISA analysis of burn tissues showed dampened inflammation evidenced by a reduction in neutrophilic infiltration and modulation of inflammatory cytokines. Angiogenesis within the burn area was also improved in MAPC cell treated mice. However, no significant effect of MAPC cell treatment was observed on extracellular matrix production. Treatment of burns with MAPC cells improved burn injury repair with reduced time to healing, decreased inflammation and increased angiogenesis. These findings demonstrate the promising effects of MAPC cells on burn injury repair and suggest MAPC cells as a candidate source for clinical cell therapies.


Subject(s)
Burns , Wound Healing , Animals , Burns/therapy , Inflammation , Mice , Re-Epithelialization , Stem Cells
11.
Front Cell Dev Biol ; 8: 603508, 2020.
Article in English | MEDLINE | ID: mdl-33330501

ABSTRACT

Flightless I is an actin-binding member of the gelsolin family of actin-remodeling proteins that inhibits actin polymerization but does not possess actin severing ability. Flightless I functions as a regulator of many cellular processes including proliferation, differentiation, apoptosis, and migration all of which are important for many physiological processes including wound repair, cancer progression and inflammation. More than simply facilitating cytoskeletal rearrangements, Flightless I has other important roles in the regulation of gene transcription within the nucleus where it interacts with nuclear hormone receptors to modulate cellular activities. In conjunction with key binding partners Leucine rich repeat in the Flightless I interaction proteins (LRRFIP)1/2, Flightless I acts both synergistically and competitively to regulate a wide range of cellular signaling including interacting with two of the most important inflammatory pathways, the NLRP3 inflammasome and the MyD88-TLR4 pathways. In this review we outline the current knowledge about this important cytoskeletal protein and describe its many functions across a range of health conditions and pathologies. We provide perspectives for future development of Flightless I as a potential target for clinical translation and insights into potential therapeutic approaches to manipulate Flightless I functions.

12.
Adv Wound Care (New Rochelle) ; 9(12): 637-648, 2020 12.
Article in English | MEDLINE | ID: mdl-33124967

ABSTRACT

Objective: Increased macrophage recruitment in the early stages of wound healing leads to an excessive inflammatory response associated with elevated fibrosis and scarring. This recruitment relies upon integrins on the surface of monocytes that regulate their migration and extravasation from the circulation into the wound site, where they differentiate into macrophages. The aim of this study was to determine if inhibiting monocyte extravasation from the circulation into burns would reduce macrophages numbers in burns and lead to reduced inflammation and scar formation. Approach: Scald burns were created on mice and treated with integrin alpha L (αL) function blocking antibody via intravenous delivery day 1 after injury. The effect of inhibiting macrophage recruitment into the burn was assessed using macro- and microscopic wound parameters as well as immunohistochemistry for inflammatory cell markers, cytokines, and collagen deposition. Results: Burn wound-associated macrophages were reduced by 54.7% at day 3 following treatment with integrin αL antibody, with levels returning to normal by day 7. This reduction in macrophages led to a concomitant reduction in inflammatory mediators, including tumor necrosis factor-alpha (TNFα) and Il-10 as well as a reduction in proscarring transforming growth factor beta 1 (TGFß1). This reduced inflammatory response was also associated with less alpha smooth muscle actin (αSMA) expression and an overall trend toward reduced scar formation with a lower collagen I/III ratio. Innovation: Treatment of burns with integrin αL function blocking antibodies reduces inflammation in burn wounds. Conclusion: These results suggest that reducing macrophage infiltration into burn wounds may lead to a reduced early inflammatory response and less scar formation following burn injury.


Subject(s)
Antibodies, Monoclonal/pharmacology , Burns/drug therapy , CD11a Antigen/immunology , Macrophages/drug effects , Wound Healing/drug effects , Animals , Burns/pathology , Cicatrix/prevention & control , Collagen/drug effects , Collagen/metabolism , Fibrosis/drug therapy , Humans , Inflammation/prevention & control , Inflammation Mediators , Macrophages/metabolism , Male , Mice , Mice, Inbred BALB C , Transforming Growth Factor beta1/drug effects , Transforming Growth Factor beta1/metabolism , Tumor Necrosis Factor-alpha/drug effects , Tumor Necrosis Factor-alpha/metabolism
13.
Int J Mol Sci ; 21(16)2020 Aug 05.
Article in English | MEDLINE | ID: mdl-32764293

ABSTRACT

Pericytes are peri-vascular mural cells which have an important role in the homeostatic regulation of inflammatory and angiogenic processes. Flightless I (Flii) is a cytoskeletal protein involved in regulating cellular functions, but its involvement in pericyte activities during wound healing is unknown. Exacerbated inflammation and reduced angiogenesis are hallmarks of impaired diabetic healing responses, and strategies aimed at regulating these processes are vital for improving healing outcomes. To determine the effect of altering Flii expression on pericyte function, in vitro and in vivo studies were performed to assess the effect on healing, inflammation and angiogenesis in diabetic wounds. Here, we demonstrated that human diabetic wounds display upregulated expression of the Flii protein in conjunction with a depletion in the number of platelet derived growth factor receptor ß (PDGFRß) +/ neural glial antigen 2 (NG2) + pericytes present in the dermis. Human pericytes were found to be positive for Flii and attenuating its expression in vitro through siRNA knockdown led to enhanced proliferation, migration and angiogenic functions. Genetic knockdown of Flii in a streptozotocin-induced murine model of diabetes led to increased numbers of pericytes within the wound. This was associated with dampened inflammation, an increased rate of angiogenic repair and improved wound healing. Our findings show that Flii expression directly impacts pericyte functions, including proliferation, motility and angiogenic responses. This suggests that Flii regulation of pericyte function may be in part responsible for the changes in pericyte-related processes observed in diabetic wounds.


Subject(s)
Diabetes Mellitus/genetics , Diabetic Foot/genetics , Inflammation/genetics , Microfilament Proteins/genetics , Trans-Activators/genetics , Wound Healing/genetics , Animals , Cell Proliferation/genetics , Cytoskeletal Proteins/genetics , Diabetes Complications/genetics , Diabetes Complications/pathology , Diabetes Mellitus/therapy , Diabetic Foot/complications , Diabetic Foot/pathology , Humans , Inflammation/complications , Inflammation/pathology , Inflammation/therapy , Mice , Pericytes/metabolism , Pericytes/pathology
14.
Stem Cell Res Ther ; 11(1): 299, 2020 07 17.
Article in English | MEDLINE | ID: mdl-32680566

ABSTRACT

BACKGROUND: Stem cell therapies have been widely investigated for their healing effects. However, the translation of these therapies has been hampered by the requirement to deliver live allogeneic or autologous cells directly to the wound in a clinical setting. Multipotent adult progenitor cells (MAPC® cells) are a subpopulation of bone marrow-derived adherent stem cells that secrete a wide range of factors known to accelerate the wound healing process. The aim of this study was to determine the impact of MAPC cells secretome on healing outcomes without the presence of MAPC cells. METHODS: The effect of MAPC-conditioned medium (MAPC-CM) on the capacity of keratinocytes, fibroblasts and endothelial cells to migrate and proliferate was determined in vitro using scratch wound closure and WST1 assay, respectively. The effect of MAPC-CM on collagen deposition and angiogenesis was also assessed using in vitro methods. Additionally, two excisional wounds were created on the dorsal surface of mice (n = 8/group) and 100 µL of 20× MAPC-CM were intradermally injected to the wound margins. Wound tissues were collected at 3, 7 and 14 days post-wounding and stained with H&E for microscopic analysis. Immunohistochemistry was performed to investigate inflammation, angiogenesis and collagen deposition in the wounds. RESULTS: Skin fibroblasts, keratinocytes and endothelial cells treated with MAPC-CM all showed improved rates of scratch closure and increased cellular proliferation. Moreover, fibroblasts treated with MAPC-CM deposited more collagens I and III and endothelial cells treated with MAPC-CM showed increased capillary tube formation. Murine excisional wounds intradermally injected with MAPC-CM showed a significant reduction in the wound area and an increase in the rate of reepithelialisation. The results also showed that inflammatory cell infiltration was decreased while an increase in angiogenesis, as well as collagens I and III expressions, was observed. CONCLUSION: These findings suggest that factors produced by MAPC cells can have an important effect on cutaneous wound healing by affecting skin cell proliferation and migration, balancing inflammation and improving the formation of extracellular matrix and angiogenesis. Development of stem cell-free therapy for the treatment of wounds may be a more clinically translatable approach for improving healing outcomes.


Subject(s)
Endothelial Cells , Wound Healing , Adult , Animals , Culture Media, Conditioned/pharmacology , Humans , Inflammation , Mice , Multipotent Stem Cells , Skin
15.
Adv Wound Care (New Rochelle) ; 9(4): 161-173, 2020 04 01.
Article in English | MEDLINE | ID: mdl-32117580

ABSTRACT

Objective: Activation of epidermal stem cells (EpSCs) from their quiescent niche is an integral component of wound reepithelialization and involves Wnt/ß-catenin (ß-Cat) signaling and remodeling of the actin cytoskeleton. The aim of this study was to investigate the effect of Flightless I (Flii), a cytoskeletal protein and inhibitor of wound healing, on EpSC activation during wound repair. Approach: Genetically modified Flii mice (Flii knockdown: Flii+/- , wild type: WT, Flii overexpressing: FliiTg/Tg ) received two incisional wounds along the lateral axis of the dorsal skin. Indicators of EpSC activation (epidermal growth factor receptor 1 [EGFR1], leucine-rich repeats and immunoglobulin-like domains-1 [Lrig1], K14), Wnt/ß-Cat signaling (Lgr6, Flap2, ß-Cat, and axis inhibition protein 2 [Axin2]), and cell proliferation (proliferating cell nuclear antigen [PCNA]) were assessed using immunohistochemistry. ß-Cat stabilization was examined using western blotting with cell cycling and differentiation of isolated CD34+ITGA6high EpSCs examined using real time-quantitative polymerase chain reaction after treatment with wound-conditioned media. Results:Flii+/- led to increased numbers of activated EpSCs expressing PCNA, elevated EGFR1, and decreased Lrig1. EpSCs in Flii+/- hair follicle niches adjacent to the wounds also showed expression of Wnt-activation markers including increased ß-Cat and Lgr6, and decreased Axin2. EpSCs (CD34+ITGA6high) isolated from Flii+/- unwounded skin showed elevated expression of cell-cycling genes including ΔNp63, filaggrin (Fila), involucrin (Invo), cyclin D1 (Ccnd1), and cell-division cycle protein-20 (Cdc20); and elevated ΔNp63 and Invo after treatment with wound-conditioned media compared with WT and FliiTg/Tg counterparts. Innovation: Flii was identified as an inhibitor of EpSC activation that may explain its negative effects on wound reepithelialization. Conclusion: Flii may inhibit EpSC activation by interrupting Wnt/ß-Cat signaling. Strategies that reduce Flii may increase activation of EpSCs and promote reepithelialization of wounds.


Subject(s)
Epidermal Cells/metabolism , Microfilament Proteins/metabolism , Stem Cell Niche/genetics , Stem Cells/metabolism , Trans-Activators/metabolism , Wound Healing/genetics , Animals , Cell Proliferation/genetics , Disease Models, Animal , Female , Gene Knockdown Techniques , Mice , Mice, Inbred BALB C , Mice, Transgenic , Microfilament Proteins/genetics , Proliferating Cell Nuclear Antigen/metabolism , Skin/injuries , Skin/metabolism , Trans-Activators/genetics , Wnt Signaling Pathway/genetics , beta Catenin/metabolism
16.
J Invest Dermatol ; 137(1): 228-236, 2017 01.
Article in English | MEDLINE | ID: mdl-27595936

ABSTRACT

The mammalian digit tip is capable of both reparative and regenerative wound healing dependent on the level of amputation injury. Removal of the distal third of the terminal phalange results in successful regeneration, whereas a more severe, proximal, amputation heals by tissue repair. Flightless I (Flii) is involved in both tissue repair and regeneration. It negatively regulates wound repair but elicits a positive effect in hair follicle regeneration, with Flii overexpression resulting in significantly longer hair fibers. Using a model of digit amputation in Flii overexpressing (FIT) mice, we investigated Flii in digit regeneration. Both wild-type and FIT digits regenerated after distal amputation with newly regenerated FIT claws being significantly longer than intact controls. No regeneration was observed in wild-type mice after severe proximal amputation; however, FIT mice showed significant regeneration of the missing digit. Using a three-dimensional model of nail formation, connective tissue fibroblasts isolated from the mesenchymal tissue surrounding the wild-type and FIT digit tips and cocultured with skin keratinocytes demonstrated aggregate structures resembling rudimentary nail buds only when Flii was overexpressed. Moreover, ß-catenin and cyclin D1 expression was maintained in the FIT regenerating germinal matrix suggesting a potential interaction of Flii with Wnt signaling during regeneration.


Subject(s)
Amputation, Surgical/methods , Carrier Proteins/genetics , Gene Expression Regulation , Hoof and Claw/surgery , Regeneration/genetics , Animals , Biopsy, Needle , Disease Models, Animal , Hoof and Claw/physiology , Immunohistochemistry , Mice , Mice, Inbred BALB C , Mice, Transgenic , Microfilament Proteins , Random Allocation , Trans-Activators , Wound Healing/genetics , Wound Healing/physiology , beta Catenin/metabolism
17.
PLoS One ; 10(4): e0123651, 2015.
Article in English | MEDLINE | ID: mdl-25874771

ABSTRACT

Human keratinocytes are difficult to isolate and have a limited lifespan. Traditionally, immortalised keratinocyte cell lines are used in vitro due to their ability to bypass senescence and survive indefinitely. However these cells do not fully retain their ability to differentiate in vitro and they are unable to form a normal stratum corneum in organotypic culture. Here we aimed to generate a pool of phenotypically similar keratinocytes from human donors that could be used in monolayer culture, without a fibroblast feeder layer, and in 3D human skin equivalent models. Primary human neonatal epidermal keratinocytes (HEKn) were cultured in low calcium, (0.07 mM) media, +/-10 µM Y-27632 ROCK inhibitor (HEKn-CaY). mRNA and protein was extracted and expression of differentiation markers Keratin 14 (K14), Keratin 10 (K10) and Involucrin (Inv) assessed by qRT-PCR and Western blotting. The differentiation potential of the HEKn-CaY cultures was assessed by increasing calcium levels and removing the Y-27632 for 72 hrs prior to assessment of K14, K10 and Inv. The ability of the HEKn-CaY, to form a stratified epithelium was assessed using a human skin equivalent (HSE) model in the absence of Y-27632. Increased proliferative capacity, expansion potential and lifespan of HEKn was observed with the combination of low calcium and 10 µM ROCK inhibitor Y-27632. The removal of Y-27632 and the addition of high calcium to induce differentiation allowed the cells to behave as primary keratinocytes even after extended serial passaging. Prolonged lifespan HEK-CaYs were capable of forming an organised stratified epidermis in 3D HSE cultures, demonstrating their ability to fully stratify and retain their original, primary characteristics. In conclusion, the use of 0.07 mM Calcium and 10 µM Y-27632 in HEKn monocultures provides the opportunity to culture primary human keratinocytes without a cell feeder layer for extended periods of culture whilst retaining their ability to differentiate and form a stratified epithelium.


Subject(s)
Amides/chemistry , Calcium/chemistry , Cell Culture Techniques/methods , Cell Proliferation/drug effects , Epidermal Cells , Keratinocytes/cytology , Pyridines/chemistry , Cell Differentiation , Cells, Cultured , Enzyme Inhibitors/chemistry , Humans , Keratin-10/metabolism , Keratin-14/metabolism , Phenotype , Skin/cytology
18.
Cells ; 1(4): 1313-27, 2012 Dec 19.
Article in English | MEDLINE | ID: mdl-24710556

ABSTRACT

Wound healing results in the repair of injured tissues however fibrosis and scar formation are, more often than not the unfortunate consequence of this process. The ability of lower order vertebrates and invertebrates to regenerate limbs and tissues has been all but lost in mammals; however, there are some instances where glimpses of mammalian regenerative capacity do exist. Here we describe the unlocked potential that exists in mammals that may help us understand the process of regeneration post-injury and highlight the potential role of the actin cytoskeleton in this process. The precise function and regulation of the cytoskeleton is critical to the success of the healing process and its manipulation may therefore facilitate regenerative healing. The gelsolin family of actin remodelling proteins in particular has been shown to have important functions in wound healing and family member Flightless I (Flii) is involved in both regeneration and repair. Understanding the interactions between different cytoskeletal proteins and their dynamic control of processes including cellular adhesion, contraction and motility may assist the development of therapeutics that will stimulate regeneration rather than repair.

19.
J Pathol ; 225(3): 401-13, 2011 Nov.
Article in English | MEDLINE | ID: mdl-21984127

ABSTRACT

Epidermolysis bullosa (EB) is a severe genetic skin fragility syndrome characterized by blister formation. The molecular basis of EB is still largely unknown and wound healing in patients suffering from EB remains a major challenge to their survival. Our previous studies have identified the actin remodelling protein Flightless I (Flii) as an important mediator of wound repair. Here we identify Flii as a novel target involved in skin blistering. Flii expression was significantly elevated in 30 patients with EB, most prominently in patients with recessive dystrophic EB (RDEB) who have defects in production of type VII collagen (ColVII). Using an autoimmune ColVII murine model of EB acquisita (EBA) and an immunocompetent-ColVII-hypomorphic genetic mouse model of RDEB together with murine Flii alleles, we investigated the contribution of Flii to EB. Overexpression of Flii produced severe blistering post-induction of EBA, while decreased Flii reduced blister severity, elevated integrin expression, and improved ColVII production. Flii(+/-) blistered skin showed reduced α-SMA, TGF-ß1, and Smad 2/3 expression, suggesting that decreasing Flii may affect fibrosis. In support of this, Flii-deficient fibroblasts from EBA mice were less able to contract collagen gels in vitro; however, addition of TGF-ß1 restored collagen contraction, suggesting an interplay between Flii and TGF-ß1. Elevated Flii gene and protein expression was further observed in the blisters of ColVII hypomorphic mice, a murine model of RDEB, suggesting that reducing Flii in blistered skin could be a potential new approach for treating patients with EB.


Subject(s)
Autoimmune Diseases/metabolism , Cytoskeletal Proteins/biosynthesis , Epidermolysis Bullosa Acquisita/metabolism , Animals , Autoimmune Diseases/genetics , Autoimmune Diseases/pathology , Carrier Proteins , Cell Adhesion/physiology , Cell Differentiation/physiology , Cell Proliferation , Cells, Cultured , Collagen Type VII/biosynthesis , Cytoskeletal Proteins/genetics , Disease Models, Animal , Epidermolysis Bullosa Acquisita/genetics , Epidermolysis Bullosa Acquisita/pathology , Fibroblasts/pathology , Fibroblasts/physiology , Gene Expression Regulation , Humans , Integrins/metabolism , Mice , Mice, Inbred BALB C , Mice, Transgenic , Microfilament Proteins/biosynthesis , Microfilament Proteins/genetics , Receptors, Cytoplasmic and Nuclear/biosynthesis , Receptors, Cytoplasmic and Nuclear/genetics , Signal Transduction/physiology , Skin/metabolism , Smad Proteins/physiology , Trans-Activators , Transforming Growth Factor beta1/physiology , Wound Healing/physiology
20.
Immunol Cell Biol ; 87(2): 131-40, 2009 Feb.
Article in English | MEDLINE | ID: mdl-18839016

ABSTRACT

Leucocytes are essential in healing wounds and are predominantly involved in the inflammatory and granulation stages of wound repair. Eosinophils are granulocytic leucocytes and are specifically regulated by interleukin-5 (IL-5), a cytokine produced by T helper 2 (Th2) cells. To characterize more clearly the role of the IL-5 and eosinophils in the wound healing process, IL-5-overexpressing and IL-5-deficient mice were used as models of eosinophilia and eosinophil depletion, respectively. Our results reveal a significantly altered inflammatory response between IL-5-overexpressing and IL-5 knockout mice post-wounding. Healing was significantly delayed in IL-5-overexpressing mice with wounds gaping wider and exhibiting impaired re-epithelialization. A delay in collagen deposition was observed suggesting a direct effect on matrix synthesis. A significant increase in inflammatory cell infiltration, particularly eosinophils and CD4(+) cells, one of the main cell types which secrete IL-5, was observed in IL-5-overexpressing mice wounds suggesting that one of the main roles of IL-5 in wound repair may be to promote the infiltration of eosinophils into healing wounds. Healing is delayed in IL-5-overexpressing mice and this corresponds to significantly increased levels of eosinophils and CD4(+) cells within the wound site that may contribute to and exacerbate the inflammatory response, resulting in detrimental wound repair.


Subject(s)
Eosinophilia/immunology , Inflammation/immunology , Interleukin-5/metabolism , Wound Healing/immunology , Animals , Collagen/metabolism , Gene Expression , Mice , Mice, Inbred C57BL , Mice, Inbred CBA , Mice, Transgenic , Time Factors
SELECTION OF CITATIONS
SEARCH DETAIL
...