Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
1.
Genes Brain Behav ; 13(3): 333-40, 2014 Mar.
Article in English | MEDLINE | ID: mdl-24286483

ABSTRACT

Migraine headaches are a common comorbidity in Rolandic epilepsy (RE) and familial aggregation of migraine in RE families suggests a genetic basis not mediated by seizures. We performed a genome-wide linkage analysis of the migraine phenotype in 38 families with RE to localize potential genetic contribution, with a follow-up in an additional 21 families at linked loci. We used two-point and multipoint LOD (logarithm of the odds) score methods for linkage, maximized over genetic models. We found evidence of linkage to migraine at chromosome 17q12-22 [multipoint HLOD (heterogeneity LOD) 4.40, recessive, 99% penetrance], replicated in the second dataset (HLOD 2.61), and suggestive evidence at 1q23.1-23.2, centering over the FHM2 locus (two-point LOD 3.00 and MP HLOD 2.52). Sanger sequencing in 14 migraine-affected individuals found no coding mutations in the FHM2 gene ATP1A2. There was no evidence of pleiotropy for migraine and either reading or speech disorder, or the electroencephalographic endophenotype of RE when the affected definition was redefined as those with migraine or the comorbid phenotype, and pedigrees were reanalyzed for linkage. In summary, we report a novel migraine susceptibility locus at 17q12-22, and a second locus that may contribute to migraine in the general population at 1q23.1-23.2. Comorbid migraine in RE appears genetically influenced, but we did not obtain evidence that the identified susceptibility loci are consistent with pleiotropic effects on other comorbidities in RE. Loci identified here should be fine-mapped in individuals from RE families with migraine, and prioritized for analysis in other types of epilepsy-associated migraine.


Subject(s)
Chromosomes, Human, Pair 17/genetics , Chromosomes, Human, Pair 1/genetics , Epilepsy, Rolandic/genetics , Genetic Loci , Lod Score , Migraine with Aura/genetics , Child , Child, Preschool , Epilepsy, Rolandic/diagnosis , Genetic Pleiotropy , Humans , Migraine with Aura/diagnosis , Pedigree , Sodium-Potassium-Exchanging ATPase/genetics
2.
J Abnorm Child Psychol ; 41(3): 497-507, 2013 Apr.
Article in English | MEDLINE | ID: mdl-23315233

ABSTRACT

Endophenotypes or intermediate phenotypes are of great interest in neuropsychiatric genetics because of their potential for facilitating gene discovery. We evaluated response inhibition, latency and variability measures derived from the stop task as endophenotypes of ADHD by testing whether they were related to ADHD traits in the general population, heritable and shared genetic risk with ADHD traits. Participants were 16,099 children and adolescents, ages 6 to 18 years who visited a local science center. We measured ADHD traits using the Strengths and Weaknesses of ADHD-symptoms and Normal-Behavior (SWAN) rating scale and performance on the stop signal task (SST)-response inhibition (SSRT), response latency (GoRT), and response variability (GoRTSD). Regression analysis was used to assess the relationship of cognitive measures and ADHD traits while controlling for family, age, sex, ethnicity, socioeconomic status and treatment status. Heritability of ADHD and cognitive traits was estimated using SOLAR in 7,483 siblings from 3,507 families that included multiple siblings. Bivariate relationships between pairs of variables were examined. Individuals with greater ADHD trait scores had worse response inhibition, slower response latency, and greater variability. Younger participants and girls had inferior performance although the gender effects were minimal and evident in youngest participants. Inhibition, latency, variability, total ADHD traits, inattention and hyperactivity-impulsivity scores were significantly heritable. ADHD traits and inhibition, but not latency or variability were coheritable. In the largest study in the general population, we found support for the validity of response inhibition as an endophenotype of ADHD.


Subject(s)
Attention Deficit Disorder with Hyperactivity/psychology , Inhibition, Psychological , Psychomotor Performance , Adolescent , Attention Deficit Disorder with Hyperactivity/genetics , Child , Endophenotypes , Female , Humans , Male , Reaction Time , Regression Analysis
3.
Clin Genet ; 79(2): 136-46, 2011 Feb.
Article in English | MEDLINE | ID: mdl-20681990

ABSTRACT

It is generally presumed that the cystic fibrosis (CF) population is relatively homogeneous, and predominantly of European origin. The complex ethnic make-up observed in the CF patients collected by the North American CF Modifier Gene Consortium has brought this assumption into question, and suggested the potential for population substructure in the three CF study samples collected from North America. It is well appreciated that population substructure can result in spurious genetic associations. To understand the ethnic composition of the North American CF population, and to assess the need for population structure adjustment in genetic association studies with North American CF patients, genome-wide single-nucleotide polymorphisms on 3076 unrelated North American CF patients were used to perform population structure analyses. We compared self-reported ethnicity to genotype-inferred ancestry, and also examined whether geographic distribution and cystic fibrosis transmembrane regulator (CFTR) mutation type could explain the population structure observed. Although largely Caucasian, our analyses identified a considerable number of CF patients with admixed African-Caucasian, Mexican-Caucasian and Indian-Caucasian ancestries. Population substructure was present and comparable across the three studies of the consortium. Neither geographic distribution nor CFTR mutation type explained the population structure. Given the ethnic diversity of the North American CF population, it is essential to carefully detect, estimate and adjust for population substructure to guard against potential spurious findings in CF genetic association studies. Other Mendelian diseases that are presumed to predominantly affect single ethnic groups may also benefit from careful analysis of population structure.


Subject(s)
Cystic Fibrosis/ethnology , Cystic Fibrosis/epidemiology , Demography , Genome-Wide Association Study , Ethnicity/statistics & numerical data , Genotype , Humans , North America , Principal Component Analysis
4.
Genes Brain Behav ; 9(8): 1004-12, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20825490

ABSTRACT

We recently showed genomewide linkage of centrotemporal sharp waves (CTS) in classic Rolandic epilepsy (RE) families to chromosome 11p13, and fine-mapped this locus to variants in the ELP4 gene. Speech sound disorder (SSD) is a common comorbidity in RE subjects, of unknown etiology, which co-aggregates in family members in a manner that could hypothetically be explained by shared underlying genetic risk with CTS. Furthermore, the neural mechanism of SSD is unknown, although individuals with rare, Mendelian forms of RE are described with severe verbal and oromotor apraxia. We therefore first performed genomewide linkage analysis for SSD, operationally defined as clinical history consistent with ICD-10 speech articulation disorder, in 38 families singly ascertained through a proband with RE. We tested the hypothesis of shared genetic risk with CTS at the 11p13 locus. In the second part of the study we used computerized acoustic analysis of recorded speech to test the hypothesis of dyspraxia as a mechanism for SSD in a smaller subset of RE probands and relatives. In two-point and multipoint LOD score analysis, we found that evidence for linkage to the 11p13 locus increased substantially when the phenotype was broadened from CTS to CTS/SSD. In multipoint analysis, the LOD score rose by 3.2 to HLOD 7.54 at D11S914 for CTS/SSD, the same marker at which multipoint linkage maximized for CTS alone. Non-parametric, affected-only methods in a sub-set of the data provide further confirmatory evidence for pleiotropy. In acoustic analysis there were voice-onset time abnormalities in 10/18 RE probands, 8/16 siblings and 5/15 parents, providing evidence of breakdown in the spatial/temporal properties of speech articulation consistent with a dyspraxic mechanism. The results from genetic and physiological studies suggest a pleiotropic role for the 11p13 locus in the development of both SSD and CTS, and also indicate a dyspraxic mechanism for the SSD linked to 11p13. Taken together, these data strongly support a neurodevelopmental origin for classic RE.


Subject(s)
Apraxias/genetics , Articulation Disorders/genetics , Chromosomes, Human, Pair 11/genetics , Epilepsy, Rolandic/complications , Quantitative Trait Loci/genetics , Adolescent , Adult , Apraxias/complications , Articulation Disorders/complications , Child , Electroencephalography , Epilepsy, Rolandic/genetics , Female , Genetic Linkage , Genetic Pleiotropy , Humans , Male , Middle Aged , Pedigree , Phonetics
5.
Mol Psychiatry ; 15(2): 166-76, 2010 Feb.
Article in English | MEDLINE | ID: mdl-18663369

ABSTRACT

Panic disorder (PD) and social anxiety disorder (SAD) are moderately heritable anxiety disorders. We analyzed five genes, derived from pharmacological or translational mouse models, in a new case-control study of PD and SAD in European Americans: (1) the serotonin transporter (SLC6A4), (2) the serotonin receptor 1A, (3) catechol-O-methyltransferase, (4) a regulator of g-protein signaling and (5) the gastrin-releasing peptide receptor. Cases were interviewed using the schedule for affective disorders and schizophrenia and were required to have a probable or definite lifetime diagnosis of PD (N=179), SAD (161) or both (140), with first onset by age 31 and a family history of anxiety. Final diagnoses were determined using the best estimate procedure, blind to genotyping data. Controls were obtained from the National Institute of Mental Health Human Genetics Initiative; only subjects above 25 years of age who screened negative for all psychiatric symptoms were included (N=470). A total of 45 single nucleotide polymorphisms were successfully genotyped over the five selected genes using Applied Biosystems SNPlex protocol. SLC6A4 provided strong and consistent evidence of association with the PD and PD+SAD groups, with the most significant association in both groups being at rs140701 (chi(2)=10.72, P=0.001 with PD and chi(2)=8.59, P=0.003 in the PD+SAD group). This association remained significant after multiple test correction. Those carrying at least one copy of the haplotype A-A-G constructed from rs3794808, rs140701 and rs4583306 have 1.7 times the odds of PD than those without the haplotype (95% confidence interval: 1.2-2.3). The SAD only group did not provide evidence of association, suggesting a PD-driven association. The findings remained after adjustment for age and sex, and there was no evidence that the association was due to population stratification. The promoter region of the gene, 5-HTTLPR, did not provide any evidence of association, regardless of whether analyzed as a triallelic or biallelic locus, nor did any of the other four candidate genes tested. Our findings suggest that the serotonin transporter gene may play a role in PD; however, the findings require replication. Future studies should attend to the entire genetic region rather than the promoter.


Subject(s)
Genetic Predisposition to Disease , Panic Disorder/genetics , Polymorphism, Single Nucleotide/genetics , Promoter Regions, Genetic/genetics , Serotonin Plasma Membrane Transport Proteins/genetics , Adolescent , Adult , Aged , Female , Genome-Wide Association Study , Genotype , Humans , Male , Middle Aged , Phobic Disorders/genetics , Receptor, Serotonin, 5-HT1A/genetics , Young Adult
SELECTION OF CITATIONS
SEARCH DETAIL