Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 142
Filter
1.
Proc Natl Acad Sci U S A ; 121(21): e2405827121, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38748572

ABSTRACT

The RNA polymerase II (Pol II) elongation rate influences poly(A) site selection, with slow and fast Pol II derivatives causing upstream and downstream shifts, respectively, in poly(A) site utilization. In yeast, depletion of either of the histone chaperones FACT or Spt6 causes an upstream shift of poly(A) site use that strongly resembles the poly(A) profiles of slow Pol II mutant strains. Like slow Pol II mutant strains, FACT- and Spt6-depleted cells exhibit Pol II processivity defects, indicating that both Spt6 and FACT stimulate the Pol II elongation rate. Poly(A) profiles of some genes show atypical downstream shifts; this subset of genes overlaps well for FACT- or Spt6-depleted strains but is different from the atypical genes in Pol II speed mutant strains. In contrast, depletion of histone H3 or H4 causes a downstream shift of poly(A) sites for most genes, indicating that nucleosomes inhibit the Pol II elongation rate in vivo. Thus, chromatin-based control of the Pol II elongation rate is a potential mechanism, distinct from direct effects on the cleavage/polyadenylation machinery, to regulate alternative polyadenylation in response to genetic or environmental changes.


Subject(s)
Chromatin , Histones , Polyadenylation , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcriptional Elongation Factors , RNA Polymerase II/metabolism , RNA Polymerase II/genetics , Chromatin/metabolism , Chromatin/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Saccharomyces cerevisiae Proteins/metabolism , Saccharomyces cerevisiae Proteins/genetics , Histones/metabolism , Transcriptional Elongation Factors/metabolism , Transcriptional Elongation Factors/genetics , Nucleosomes/metabolism , Nucleosomes/genetics , Transcription Elongation, Genetic , DNA-Binding Proteins/metabolism , DNA-Binding Proteins/genetics , Histone Chaperones/metabolism , Histone Chaperones/genetics , Poly A/metabolism
2.
Trends Genet ; 40(6): 471-479, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38643034

ABSTRACT

Enhancers are the key regulators of other DNA-based processes by virtue of their unique ability to generate nucleosome-depleted regions in a highly regulated manner. Enhancers regulate cell-type-specific transcription of tRNA genes by RNA polymerase III (Pol III). They are also responsible for the binding of the origin replication complex (ORC) to DNA replication origins, thereby regulating origin utilization, replication timing, and replication-dependent chromosome breaks. Additionally, enhancers regulate V(D)J recombination by increasing access of the recombination-activating gene (RAG) recombinase to target sites and by generating non-coding enhancer RNAs and localized regions of trimethylated histone H3-K4 recognized by the RAG2 PHD domain. Thus, enhancers represent the first step in decoding the genome, and hence they regulate biological processes that, unlike RNA polymerase II (Pol II) transcription, do not have dedicated regulatory proteins.


Subject(s)
DNA Replication , Enhancer Elements, Genetic , RNA Polymerase III , Transcription, Genetic , V(D)J Recombination , Animals , Humans , DNA Replication/genetics , Gene Expression Regulation/genetics , RNA Polymerase III/genetics , RNA Polymerase III/metabolism , Transcription, Genetic/genetics , V(D)J Recombination/genetics
3.
Mol Cell ; 84(7): 1186-1187, 2024 Apr 04.
Article in English | MEDLINE | ID: mdl-38579676

ABSTRACT

The term "intrinsically disordered region" (IDR) in proteins has been used in numerous publications. However, most proteins contain IDRs, the term refers to very different types of structures and functions, and many IDRs become structured upon interaction with other biomolecules. Thus, IDR is an unnecessary, vague, and ultimately confusing concept.


Subject(s)
Intrinsically Disordered Proteins , Intrinsically Disordered Proteins/metabolism , Protein Conformation
4.
Yeast ; 41(4): 186-191, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38041485

ABSTRACT

Polyadenylation occurs at numerous sites within 3'-untranslated regions (3'-UTRs) but rarely within coding regions. How does Pol II travel through long coding regions without generating poly(A) sites, yet then permits promiscuous polyadenylation once it reaches the 3'-UTR? The cleavage/polyadenylation (CpA) machinery preferentially associates with 3'-UTRs, but it is unknown how its recruitment is restricted to 3'-UTRs during Pol II elongation. Unlike coding regions, 3'-UTRs have long AT-rich stretches of DNA that may be important for restricting polyadenylation to 3'-UTRs. Recognition of the 3'-UTR could occur at the DNA (AT-rich), RNA (AU-rich), or RNA:DNA hybrid (rU:dA- and/or rA:dT-rich) level. Based on the nucleic acid critical for 3'-UTR recognition, there are three classes of models, not mutually exclusive, for how the CpA machinery is selectively recruited to 3'-UTRs, thereby restricting where polyadenylation occurs: (1) RNA-based models suggest that the CpA complex directly (or indirectly through one or more intermediary proteins) binds long AU-rich stretches that are exposed after Pol II passes through these regions. (2) DNA-based models suggest that the AT-rich sequence affects nucleosome depletion or the elongating Pol II machinery, resulting in dissociation of some elongation factors and subsequent recruitment of the CpA machinery. (3) RNA:DNA hybrid models suggest that preferential destabilization of the Pol II elongation complex at rU:dA- and/or rA:dT-rich duplexes bridging the nucleotide addition and RNA exit sites permits preferential association of the CpA machinery with 3'-UTRs. Experiments to provide evidence for one or more of these models are suggested.


Subject(s)
Polyadenylation , RNA Polymerase II , 3' Untranslated Regions , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , DNA/metabolism
5.
J Biol Chem ; 299(11): 105289, 2023 11.
Article in English | MEDLINE | ID: mdl-37748648

ABSTRACT

Yeast mRNAs are polyadenylated at multiple sites in their 3' untranslated regions (3' UTRs), and poly(A) site usage is regulated by the rate of transcriptional elongation by RNA polymerase II (Pol II). Slow Pol II derivatives favor upstream poly(A) sites, and fast Pol II derivatives favor downstream poly(A) sites. Transcriptional elongation and polyadenylation are linked at the nucleotide level, presumably reflecting Pol II dwell time at each residue that influences the level of polyadenylation. Here, we investigate the effect of Pol II elongation rate on pausing patterns and the relationship between Pol II pause sites and poly(A) sites within 3' UTRs. Mutations that affect Pol II elongation rate alter sequence preferences at pause sites within 3' UTRs, and pausing preferences differ between 3' UTRs and coding regions. In addition, sequences immediately flanking the pause sites show preferences that are largely independent of Pol II speed. In wild-type cells, poly(A) sites are preferentially located < 50 nucleotides upstream from Pol II pause sites, but this spatial relationship is diminished in cells harboring Pol II speed mutants. Based on a random forest classifier, Pol II pause sites are modestly predicted by the distance to poly(A) sites but are better predicted by the chromatin landscape in Pol II speed derivatives. Transcriptional regulatory proteins can influence the relationship between Pol II pausing and polyadenylation but in a manner distinct from Pol II elongation rate derivatives. These results indicate a complex relationship between Pol II pausing and polyadenylation.


Subject(s)
3' Untranslated Regions , RNA Polymerase II , Saccharomyces cerevisiae Proteins , Saccharomyces cerevisiae , Transcription, Genetic , 3' Untranslated Regions/genetics , Polyadenylation , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Transcription, Genetic/genetics , Mutation , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
6.
Mol Cell ; 83(11): 1786-1797.e5, 2023 06 01.
Article in English | MEDLINE | ID: mdl-37137302

ABSTRACT

We measure transcriptional noise in yeast by analyzing chromatin structure and transcription of an 18-kb region of DNA whose sequence was randomly generated. Nucleosomes fully occupy random-sequence DNA, but nucleosome-depleted regions (NDRs) are much less frequent, and there are fewer well-positioned nucleosomes and shorter nucleosome arrays. Steady-state levels of random-sequence RNAs are comparable to yeast mRNAs, although transcription and decay rates are higher. Transcriptional initiation from random-sequence DNA occurs at numerous sites, indicating very low intrinsic specificity of the RNA Pol II machinery. In contrast, poly(A) profiles of random-sequence RNAs are roughly comparable to those of yeast mRNAs, suggesting limited evolutionary restraints on poly(A) site choice. Random-sequence RNAs show higher cell-to-cell variability than yeast mRNAs, suggesting that functional elements limit variability. These observations indicate that transcriptional noise occurs at high levels in yeast, and they provide insight into how chromatin and transcription patterns arise from the evolved yeast genome.


Subject(s)
Nucleosomes , Saccharomyces cerevisiae , Nucleosomes/genetics , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism , Chromatin/genetics , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Transcription, Genetic
7.
Proc Natl Acad Sci U S A ; 120(18): e2301117120, 2023 05 02.
Article in English | MEDLINE | ID: mdl-37094136

ABSTRACT

Alternative polyadenylation generates numerous 3' mRNA isoforms that can differ in their stability, structure, and function. These isoforms can be used to map mRNA stabilizing and destabilizing elements within 3' untranslated regions (3'UTRs). Here, we examine how environmental conditions affect 3' mRNA isoform turnover and structure in yeast cells on a transcriptome scale. Isoform stability broadly increases when cells grow more slowly, with relative half-lives of most isoforms being well correlated across multiple conditions. Surprisingly, dimethyl sulfate probing reveals that individual 3' isoforms have similar structures across different conditions, in contrast to the extensive structural differences that can exist between closely related isoforms in an individual condition. Unexpectedly, most mRNA stabilizing and destabilizing elements function only in a single growth condition. The genes associated with some classes of condition-specific stability elements are enriched for different functional categories, suggesting that regulated mRNA stability might contribute to adaptation to different growth environments. Condition-specific stability elements do not result in corresponding condition-specific changes in steady-state mRNA isoform levels. This observation is consistent with a compensatory mechanism between polyadenylation and stability, and it suggests that condition-specific mRNA stability elements might largely reflect condition-specific regulation of mRNA 3' end formation.


Subject(s)
RNA Isoforms , Saccharomyces cerevisiae , Saccharomyces cerevisiae/metabolism , Transcription, Genetic , Polyadenylation , Protein Isoforms/genetics , RNA, Messenger/metabolism , 3' Untranslated Regions , RNA Stability/genetics
8.
Elife ; 112022 11 24.
Article in English | MEDLINE | ID: mdl-36421680

ABSTRACT

Alternative polyadenylation yields many mRNA isoforms whose 3' termini occur disproportionately in clusters within 3' untranslated regions. Previously, we showed that profiles of poly(A) site usage are regulated by the rate of transcriptional elongation by RNA polymerase (Pol) II (Geisberg et al., 2020). Pol II derivatives with slow elongation rates confer an upstream-shifted poly(A) profile, whereas fast Pol II strains confer a downstream-shifted poly(A) profile. Within yeast isoform clusters, these shifts occur steadily from one isoform to the next across nucleotide distances. In contrast, the shift between clusters - from the last isoform of one cluster to the first isoform of the next - is much less pronounced, even over large distances. GC content in a region 13-30 nt downstream from isoform clusters correlates with their sensitivity to Pol II elongation rate. In human cells, the upstream shift caused by a slow Pol II mutant also occurs continuously at single nucleotide resolution within clusters but not between them. Pol II occupancy increases just downstream of poly(A) sites, suggesting a linkage between reduced elongation rate and cluster formation. These observations suggest that (1) Pol II elongation speed affects the nucleotide-level dwell time allowing polyadenylation to occur, (2) poly(A) site clusters are linked to the local elongation rate, and hence do not arise simply by intrinsically imprecise cleavage and polyadenylation of the RNA substrate, (3) DNA sequence elements can affect Pol II elongation and poly(A) profiles, and (4) the cleavage/polyadenylation and Pol II elongation complexes are spatially, and perhaps physically, coupled so that polyadenylation occurs rapidly upon emergence of the nascent RNA from the Pol II elongation complex.


Subject(s)
Nucleotides , Polyadenylation , Humans , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Poly A/genetics , Poly A/metabolism , Saccharomyces cerevisiae/genetics , 3' Untranslated Regions , Transcription, Genetic
9.
Mol Cell Biol ; 42(9): e0024422, 2022 09 15.
Article in English | MEDLINE | ID: mdl-35972270

ABSTRACT

The 3' ends of eukaryotic mRNAs are generated by cleavage of nascent transcripts followed by polyadenylation, which occurs at numerous sites within 3' untranslated regions (3' UTRs) but rarely within coding regions. An individual gene can yield many 3'-mRNA isoforms with distinct half-lives. We dissect the relative contributions of protein-coding sequences (open reading frames [ORFs]) and 3' UTRs to polyadenylation profiles in yeast. ORF-deleted derivatives often display strongly decreased mRNA levels, indicating that ORFs contribute to overall mRNA stability. Poly(A) profiles, and hence relative isoform half-lives, of most (9 of 10) ORF-deleted derivatives are very similar to their wild-type counterparts. Similarly, in-frame insertion of a large protein-coding fragment between the ORF and 3' UTR has minimal effect on the poly(A) profile in all 15 cases tested. Last, reciprocal ORF/3'-UTR chimeric genes indicate that the poly(A) profile is determined by the 3' UTR. Thus, 3' UTRs are self-contained modular entities sufficient to determine poly(A) profiles and relative 3'-isoform half-lives. In the one atypical instance, ORF deletion causes an upstream shift of poly(A) sites, likely because juxtaposition of an unusually high AT-rich stretch directs polyadenylation closely downstream. This suggests that long AT-rich stretches, which are not encountered until after coding regions, are important for restricting polyadenylation to 3' UTRs.


Subject(s)
Poly A , Polyadenylation , RNA Isoforms , Saccharomyces cerevisiae , 3' Untranslated Regions/genetics , 5' Untranslated Regions , Poly A/genetics , Poly A/metabolism , Protein Isoforms/genetics , RNA Isoforms/genetics , RNA, Messenger/genetics , RNA, Messenger/metabolism , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae/metabolism
10.
PLoS One ; 17(4): e0264799, 2022.
Article in English | MEDLINE | ID: mdl-35482762

ABSTRACT

MafB (a bZIP transcription factor), ß-catenin (the ultimate target of the Wnt signal transduction pathway that acts as a transcriptional co-activator of LEF/TCF proteins), and WDR77 (a transcriptional co-activator of multiple hormone receptors) are important for breast cellular transformation. Unexpectedly, these proteins interact directly with each other, and they have similar genomic binding profiles. Furthermore, while some of these common target sites coincide with those bound by LEF/TCF, the majority are located just downstream of transcription initiation sites at a position near paused RNA polymerase (Pol II) and the +1 nucleosome. Occupancy levels of these factors at these promoter-proximal sites are strongly correlated with the level of paused Pol II and transcriptional activity.


Subject(s)
Catenins , beta Catenin , Catenins/metabolism , Promoter Regions, Genetic , RNA Polymerase II/metabolism , Transcription Factors/metabolism , Wnt Signaling Pathway/genetics , beta Catenin/genetics , beta Catenin/metabolism
11.
Proc Natl Acad Sci U S A ; 119(4)2022 01 25.
Article in English | MEDLINE | ID: mdl-35058367

ABSTRACT

Cells have compensatory mechanisms to coordinate the rates of major biological processes, thereby permitting growth in a wide variety of conditions. Here, we uncover a compensatory link between cleavage/polyadenylation in the nucleus and messenger RNA (mRNA) turnover in the cytoplasm. On a global basis, same-gene 3' mRNA isoforms with twofold or greater differences in half-lives have steady-state mRNA levels that differ by significantly less than a factor of 2. In addition, increased efficiency of cleavage/polyadenylation at a specific site is associated with reduced stability of the corresponding 3' mRNA isoform. This inverse relationship between cleavage/polyadenylation and mRNA isoform half-life reduces the variability in the steady-state levels of mRNA isoforms, and it occurs in all four growth conditions tested. These observations suggest that during cleavage/polyadenylation in the nucleus, mRNA isoforms are marked in a manner that persists upon translocation to the cytoplasm and affects the activity of mRNA degradation machinery, thus influencing mRNA stability.


Subject(s)
RNA, Messenger/genetics , RNA, Messenger/metabolism , Yeasts/genetics , 3' Untranslated Regions , Polyadenylation , RNA Cleavage , RNA Isoforms , RNA Stability , Yeasts/metabolism
12.
Proc Natl Acad Sci U S A ; 118(46)2021 11 16.
Article in English | MEDLINE | ID: mdl-34764224

ABSTRACT

Using a tamoxifen-inducible time-course ChIP-sequencing (ChIP-seq) approach, we show that the ubiquitous transcription factor SP1 has different binding dynamics at its target sites in the human genome. SP1 very rapidly reaches maximal binding levels at some sites, but binding kinetics at other sites is biphasic, with rapid half-maximal binding followed by a considerably slower increase to maximal binding. While ∼70% of SP1 binding sites are located at promoter regions, loci with slow SP1 binding kinetics are enriched in enhancer and Polycomb-repressed regions. Unexpectedly, SP1 sites with fast binding kinetics tend to have higher quality and more copies of the SP1 sequence motif. Different cobinding factors associate near SP1 binding sites depending on their binding kinetics and on their location at promoters or enhancers. For example, NFY and FOS are preferentially associated near promoter-bound SP1 sites with fast binding kinetics, whereas DNA motifs of ETS and homeodomain proteins are preferentially observed at sites with slow binding kinetics. At promoters but not enhancers, proteins involved in sumoylation and PML bodies associate more strongly with slow SP1 binding sites than with the fast binding sites. The speed of SP1 binding is not associated with nucleosome occupancy, and it is not necessarily coupled to higher transcriptional activity. These results with SP1 are in contrast to those of human TBP, indicating that there is no common mechanism affecting transcription factor binding kinetics. The biphasic kinetics at some SP1 target sites suggest the existence of distinct chromatin states at these loci in different cells within the overall population.


Subject(s)
Genome, Human/genetics , Sp1 Transcription Factor/genetics , Binding Sites/genetics , Chromatin/genetics , Genomics/methods , Humans , Nucleotide Motifs/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Regulatory Sequences, Nucleic Acid/genetics , Transcription, Genetic/genetics
13.
Elife ; 102021 09 13.
Article in English | MEDLINE | ID: mdl-34515029

ABSTRACT

The preinitiation complex (PIC) for transcriptional initiation by RNA polymerase (Pol) II is composed of general transcription factors that are highly conserved. However, analysis of ChIP-seq datasets reveals kinetic and compositional differences in the transcriptional initiation process among eukaryotic species. In yeast, Mediator associates strongly with activator proteins bound to enhancers, but it transiently associates with promoters in a form that lacks the kinase module. In contrast, in human, mouse, and fly cells, Mediator with its kinase module stably associates with promoters, but not with activator-binding sites. This suggests that yeast and metazoans differ in the nature of the dynamic bridge of Mediator between activators and Pol II and the composition of a stable inactive PIC-like entity. As in yeast, occupancies of TATA-binding protein (TBP) and TBP-associated factors (Tafs) at mammalian promoters are not strictly correlated. This suggests that within PICs, TFIID is not a monolithic entity, and multiple forms of TBP affect initiation at different classes of genes. TFIID in flies, but not yeast and mammals, interacts strongly at regions downstream of the initiation site, consistent with the importance of downstream promoter elements in that species. Lastly, Taf7 and the mammalian-specific Med26 subunit of Mediator also interact near the Pol II pause region downstream of the PIC, but only in subsets of genes and often not together. Species-specific differences in PIC structure and function are likely to affect how activators and repressors affect transcriptional activity.


Subject(s)
Mediator Complex/metabolism , RNA Polymerase II/metabolism , Transcription Factors, General/metabolism , Transcription Initiation, Genetic , Animals , Cell Line , Databases, Genetic , Drosophila Proteins/genetics , Drosophila Proteins/metabolism , Drosophila melanogaster/enzymology , Drosophila melanogaster/genetics , Gene Expression Regulation, Fungal , Humans , Mediator Complex/chemistry , Mediator Complex/genetics , Mice , Promoter Regions, Genetic , Protein Conformation , RNA Polymerase II/chemistry , RNA Polymerase II/genetics , Saccharomyces cerevisiae/enzymology , Saccharomyces cerevisiae/genetics , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism , Species Specificity , Structure-Activity Relationship , TATA-Binding Protein Associated Factors/genetics , TATA-Binding Protein Associated Factors/metabolism , TATA-Box Binding Protein/genetics , TATA-Box Binding Protein/metabolism , Transcription Factors, General/chemistry , Transcription Factors, General/genetics , Transcription Initiation Site
14.
Elife ; 102021 08 31.
Article in English | MEDLINE | ID: mdl-34463254

ABSTRACT

The YAP and TAZ paralogs are transcriptional co-activators recruited to target sites by TEAD proteins. Here, we show that YAP and TAZ are also recruited by JUNB (a member of the AP-1 family) and STAT3, key transcription factors that mediate an epigenetic switch linking inflammation to cellular transformation. YAP and TAZ directly interact with JUNB and STAT3 via a WW domain important for transformation, and they stimulate transcriptional activation by AP-1 proteins. JUNB, STAT3, and TEAD co-localize at virtually all YAP/TAZ target sites, yet many target sites only contain individual AP-1, TEAD, or STAT3 motifs. This observation and differences in relative crosslinking efficiencies of JUNB, TEAD, and STAT3 at YAP/TAZ target sites suggest that YAP/TAZ is recruited by different forms of an AP-1/STAT3/TEAD complex depending on the recruiting motif. The different classes of YAP/TAZ target sites are associated with largely non-overlapping genes with distinct functions. A small minority of target sites are YAP- or TAZ-specific, and they are associated with different sequence motifs and gene classes from shared YAP/TAZ target sites. Genes containing either the AP-1 or TEAD class of YAP/TAZ sites are associated with poor survival of breast cancer patients with the triple-negative form of the disease.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Transformation, Neoplastic/metabolism , Intracellular Signaling Peptides and Proteins/metabolism , STAT3 Transcription Factor/metabolism , Transcription Factor AP-1/metabolism , Transcription Factors/metabolism , Transcriptional Activation , Triple Negative Breast Neoplasms/metabolism , Adaptor Proteins, Signal Transducing/genetics , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Cell Transformation, Neoplastic/pathology , Databases, Genetic , Female , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/genetics , Protein Binding , Protein Interaction Domains and Motifs , STAT3 Transcription Factor/genetics , Signal Transduction , Transcription Factor AP-1/genetics , Transcription Factors/genetics , Transcriptional Coactivator with PDZ-Binding Motif Proteins , Triple Negative Breast Neoplasms/genetics , Triple Negative Breast Neoplasms/pathology , YAP-Signaling Proteins
15.
Sci Adv ; 7(1)2021 01.
Article in English | MEDLINE | ID: mdl-33523865

ABSTRACT

Cytokines are extracellular proteins that convey messages between cells by interacting with cognate receptors at the cell surface and triggering signaling pathways that alter gene expression and other phenotypes in an autocrine or paracrine manner. Here, we show that the calcium-dependent cytokines S100A8 and S100A9 are recruited to numerous promoters and enhancers in a model of breast cellular transformation. This recruitment is associated with multiple DNA sequence motifs recognized by DNA binding transcription factors that are linked to transcriptional activation and are important for transformation. The cytokines interact with these transcription factors in nuclear extracts, and they activate transcription when artificially recruited to a target promoter. Nuclear-specific expression of S100A8/A9 promotes oncogenic transcription and leads to enhanced breast transformation phenotype. These results suggest that, in addition to its classical cytokine function, S100A8/A9 can act as a transcriptional coactivator.


Subject(s)
Breast , Calgranulin A , Calgranulin B , Cell Transformation, Neoplastic , Breast/pathology , Calgranulin A/genetics , Calgranulin A/metabolism , Calgranulin B/genetics , Calgranulin B/metabolism , Cytokines/metabolism , Humans , Transcription Factors/metabolism
16.
Proc Natl Acad Sci U S A ; 117(46): 28925-28929, 2020 11 17.
Article in English | MEDLINE | ID: mdl-33144504

ABSTRACT

Cellular transformation is associated with dramatic changes in gene expression, but it is difficult to determine which regulated genes are oncogenically relevant. Here we describe Pheno-RNA, a general approach to identifying candidate genes associated with a specific phenotype. Specifically, we generate a "phenotypic series" by treating a nontransformed breast cell line with a wide variety of molecules that induce cellular transformation to various extents. By performing transcriptional profiling across this phenotypic series, the expression profile of every gene can be correlated with the strength of the transformed phenotype. We identify ∼200 genes whose expression profiles are very highly correlated with the transformation phenotype, strongly suggesting their importance in transformation. Within biological categories linked to cancer, some genes show high correlations with the transformed phenotype, but others do not. Many genes whose expression profiles are highly correlated with transformation have never been associated with cancer, suggesting the involvement of heretofore unknown genes in cancer.


Subject(s)
Biological Variation, Population/genetics , Genetic Association Studies/methods , Transformation, Genetic/genetics , Animals , Cell Line, Transformed , Cell Line, Tumor , Cell Transformation, Neoplastic/genetics , Gene Expression Profiling/methods , Gene Expression Regulation, Neoplastic/genetics , Humans , Phenotype , RNA/genetics
17.
Elife ; 92020 08 26.
Article in English | MEDLINE | ID: mdl-32845240

ABSTRACT

Yeast cells undergoing the diauxic response show a striking upstream shift in poly(A) site utilization, with increased use of ORF-proximal poly(A) sites resulting in shorter 3' mRNA isoforms for most genes. This altered poly(A) pattern is extremely similar to that observed in cells containing Pol II derivatives with slow elongation rates. Conversely, cells containing derivatives with fast elongation rates show a subtle downstream shift in poly(A) sites. Polyadenylation patterns of many genes are sensitive to both fast and slow elongation rates, and a global shift of poly(A) utilization is strongly linked to increased purine content of sequences flanking poly(A) sites. Pol II processivity is impaired in diauxic cells, but strains with reduced processivity and normal Pol II elongation rates have normal polyadenylation profiles. Thus, Pol II elongation speed is important for poly(A) site selection and for regulating poly(A) patterns in response to environmental conditions.


Subject(s)
Polyadenylation/genetics , Saccharomyces cerevisiae/genetics , Transcription Elongation, Genetic , Poly A/genetics , Poly A/metabolism , RNA Polymerase II/genetics , RNA Polymerase II/metabolism , Saccharomyces cerevisiae Proteins/genetics , Saccharomyces cerevisiae Proteins/metabolism
18.
Genome Res ; 29(12): 1939-1950, 2019 12.
Article in English | MEDLINE | ID: mdl-31732535

ABSTRACT

Transcription factor binding to target sites in vivo is a dynamic process that involves cycles of association and dissociation, with individual proteins differing in their binding dynamics. The dynamics at individual sites on a genomic scale have been investigated in yeast cells, but comparable experiments have not been done in multicellular eukaryotes. Here, we describe a tamoxifen-inducible, time-course ChIP-seq approach to measure transcription factor binding dynamics at target sites throughout the human genome. As observed in yeast cells, the TATA-binding protein (TBP) typically displays rapid turnover at RNA polymerase (Pol) II-transcribed promoters, slow turnover at Pol III promoters, and very slow turnover at the Pol I promoter. Turnover rates vary widely among Pol II promoters in a manner that does not correlate with the level of TBP occupancy. Human Pol II promoters with slow TBP dissociation preferentially contain a TATA consensus motif, support high transcriptional activity of downstream genes, and are linked with specific activators and chromatin remodelers. These properties of human promoters with slow TBP turnover differ from those of yeast promoters with slow turnover. These observations suggest that TBP binding dynamics differentially affect promoter function and gene expression, possibly at the level of transcriptional reinitiation/bursting.


Subject(s)
Gene Expression Regulation/physiology , Genome, Human , Nucleotide Motifs , Promoter Regions, Genetic , RNA Polymerase II/metabolism , RNA Polymerase I/metabolism , TATA-Box Binding Protein/metabolism , Humans
19.
Proc Natl Acad Sci U S A ; 116(19): 9453-9462, 2019 05 07.
Article in English | MEDLINE | ID: mdl-30910960

ABSTRACT

Using an inducible, inflammatory model of breast cellular transformation, we describe the transcriptional regulatory network mediated by STAT3, NF-κB, and AP-1 factors on a genomic scale. These proinflammatory regulators form transcriptional complexes that directly regulate the expression of hundreds of genes in oncogenic pathways via a positive feedback loop. This transcriptional feedback loop and associated network functions to various extents in many types of cancer cells and patient tumors, and it is the basis for a cancer inflammation index that defines cancer types by functional criteria. We identify a network of noninflammatory genes whose expression is well correlated with the cancer inflammatory index. Conversely, the cancer inflammation index is negatively correlated with the expression of genes involved in DNA metabolism, and transformation is associated with genome instability. We identify drugs whose efficacy in cell lines is correlated with the cancer inflammation index, suggesting the possibility of using this index for personalized cancer therapy. Inflammatory tumors are preferentially associated with infiltrating immune cells that might be recruited to the site of the tumor via inflammatory molecules produced by the cancer cells.


Subject(s)
DNA, Neoplasm/metabolism , Gene Expression Regulation, Neoplastic , NF-kappa B/metabolism , Neoplasm Proteins/metabolism , Neoplasms/metabolism , STAT3 Transcription Factor/metabolism , Transcription Factor AP-1/metabolism , Cell Line, Tumor , DNA, Neoplasm/genetics , Humans , Inflammation , NF-kappa B/genetics , Neoplasm Proteins/genetics , Neoplasms/genetics , Neoplasms/pathology , STAT3 Transcription Factor/genetics , Transcription Factor AP-1/genetics
20.
Elife ; 82019 01 25.
Article in English | MEDLINE | ID: mdl-30681409

ABSTRACT

Transcription by RNA polymerase II requires assembly of a preinitiation complex (PIC) composed of general transcription factors (GTFs) bound at the promoter. In vitro, some GTFs are essential for transcription, whereas others are not required under certain conditions. PICs are stable in the absence of nucleotide triphosphates, and subsets of GTFs can form partial PICs. By depleting individual GTFs in yeast cells, we show that all GTFs are essential for TBP binding and transcription, suggesting that partial PICs do not exist at appreciable levels in vivo. Depletion of FACT, a histone chaperone that travels with elongating Pol II, strongly reduces PIC formation and transcription. In contrast, TBP-associated factors (TAFs) contribute to transcription of most genes, but TAF-independent transcription occurs at substantial levels, preferentially at promoters containing TATA elements. PICs are absent in cells deprived of uracil, and presumably UTP, suggesting that transcriptionally inactive PICs are removed from promoters in vivo.


Subject(s)
RNA Polymerase II/genetics , TATA-Binding Protein Associated Factors/genetics , Transcription Factors, General/genetics , Transcription, Genetic , DNA-Binding Proteins/genetics , Dideoxynucleotides/genetics , Promoter Regions, Genetic/genetics , Protein Binding/genetics , Saccharomyces cerevisiae/genetics , TATA-Box Binding Protein/genetics , Transcription Factor TFIID/genetics
SELECTION OF CITATIONS
SEARCH DETAIL