Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 72
Filter
1.
Environ Int ; 170: 107631, 2022 12.
Article in English | MEDLINE | ID: mdl-36402036

ABSTRACT

Globally, biomonitoring data demonstrate virtually all humans carry residues of multiple per- and polyfluoroalkyl substances (PFAS). Despite pervasive co-exposure, limited mixtures-based in vivo PFAS toxicity research has been conducted. Perfluorooctanoic acid (PFOA) and perfluorooctane sulfonic acid (PFOS) are commonly detected PFAS in human and environmental samples and both produce adverse effects in laboratory animal studies, including maternal and offspring effects when orally administered during pregnancy and lactation. To evaluate the effects of combined exposure to PFOA and PFOS, we orally exposed pregnant Sprague-Dawley rats from gestation day 8 (GD8) to postnatal day 2 (PND2) to PFOA (10-250 mg/kg/d) or PFOS (0.1-5 mg/kg/d) individually to characterize effects and dose response curve parameters, followed by a variable-ratio mixture experiment with a constant dose of PFOS (2 mg/kg/d) mixed with increasing doses of PFOA (3-80 mg/kg/d). The mixture study design was intended to: 1) shift the PFOA dose response curves for endpoints shared with PFOS, 2) allow comparison of dose addition (DA) and response addition (RA) model predictions, 3) conduct relative potency factor (RPF) analysis for multiple endpoints, and 4) avoid overt maternal toxicity. Maternal serum and liver concentrations of PFOA and PFOS were consistent between the individual chemical and mixture experiments. Combined exposure with PFOS significantly shifted the PFOA dose response curves towards effects at lower doses compared to PFOA-only exposure for multiple endpoints and these effects were well predicted by dose addition. For endpoints amenable to mixture model analyses, DA produced equivalent or better estimates of observed data than RA. All endpoints evaluated were accurately predicted by RPF and DA approaches except for maternal gestational weight gain, which produced less-than-additive results in the mixture. Data support the hypothesis of cumulative effects on shared endpoints from PFOA and PFOS co-exposure and dose additive approaches for predictive estimates of mixture effects.


Subject(s)
Maternal Exposure , Animals , Female , Pregnancy , Rats , Rats, Sprague-Dawley , Maternal Exposure/adverse effects
2.
Environ Sci Technol Lett ; 9(9): 747-751, 2022 Aug 03.
Article in English | MEDLINE | ID: mdl-36274928

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are emerging contaminants widely used in a variety of industrial and consumer applications. Due to phasing out legacy PFAS, some manufacturers developed short-chain alternatives like perfluoroalkyl ether carboxylic acids (PFECA). Published liquid chromatography-tandem mass spectrometry (LC-MS/MS) methods cover a wide range of these replacement chemicals including PFMPA (perfluoro-3-methoxypropanoic acid) and PFMBA (perfluoro-4-methoxybutanoic acid). However, many methods do not monitor for their branched isomers, PMPA (perfluoro-2-methoxypropanoic acid) and PEPA (perfluoro-2-ethoxypropanoic acid), respectively. Although these isomers are chromatographically separable under certain conditions, using the common MS/MS transitions for PFMPA (m/z 229 → 85) and PFMBA (m/z 279 → 85) can yield low or no detection signals for PMPA and PEPA, thus leading to underestimated values or nondetects. We compared various MS/MS transitions for these isomers and determined the optimal transitions for PMPA (m/z 185 → 85) and PEPA (m/z 235 → 135). We applied the developed method to water sampled near two chemical manufacturing plants and observed these analytes, plus a suspected third isomer. Using these MS/MS transitions will ensure all isomers are detected and will lead to better monitoring and exposure estimates of PFECA in humans and the environment.

3.
Angew Chem Int Ed Engl ; 61(41): e202208150, 2022 10 10.
Article in English | MEDLINE | ID: mdl-35945652

ABSTRACT

PFAS are known bioaccumulative and persistent chemicals which pollute natural waters globally. There exists a lack of granular sorbents to efficiently remove both legacy and emerging PFAS at environmentally relevant concentrations. Herein, we report a class of polymer networks with a synergistic combination of ionic and fluorous components that serve as granular materials for the removal of anionic PFAS from water. A library of Ionic Fluorogels (IFs) with systematic variation in charge density and polymer network architecture was synthesized from hydrolytically stable fluorous building blocks. The IFs were demonstrated as effective sorbents for the removal of 21 legacy and emerging PFAS from a natural water and were regenerable over multiple cycles of reuse. Comparison of one IF to a commercial ion exchange resin in mini-rapid small-scale column tests demonstrated superior performance for the removal of short-chain PFAS from natural water under operationally relevant conditions.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Ion Exchange Resins , Polymers , Water , Water Pollutants, Chemical/analysis
4.
Science ; 375(6580): eabg9065, 2022 02 04.
Article in English | MEDLINE | ID: mdl-35113710

ABSTRACT

Over the past several years, the term PFAS (per- and polyfluoroalkyl substances) has grown to be emblematic of environmental contamination, garnering public, scientific, and regulatory concern. PFAS are synthesized by two processes, direct fluorination (e.g., electrochemical fluorination) and oligomerization (e.g., fluorotelomerization). More than a megatonne of PFAS is produced yearly, and thousands of PFAS wind up in end-use products. Atmospheric and aqueous fugitive releases during manufacturing, use, and disposal have resulted in the global distribution of these compounds. Volatile PFAS facilitate long-range transport, commonly followed by complex transformation schemes to recalcitrant terminal PFAS, which do not degrade under environmental conditions and thus migrate through the environment and accumulate in biota through multiple pathways. Efforts to remediate PFAS-contaminated matrices still are in their infancy, with much current research targeting drinking water.


Subject(s)
Environmental Pollutants , Fluorocarbon Polymers , Fluorocarbons , Animals , Biodegradation, Environmental , Drinking Water/chemistry , Environmental Exposure , Environmental Pollutants/analysis , Environmental Pollutants/chemistry , Environmental Pollutants/toxicity , Environmental Restoration and Remediation , Fluorocarbon Polymers/analysis , Fluorocarbon Polymers/chemistry , Fluorocarbon Polymers/toxicity , Fluorocarbons/analysis , Fluorocarbons/chemistry , Fluorocarbons/toxicity , Halogenation , Humans , Water Pollution, Chemical/analysis
5.
Environ Int ; 160: 107056, 2022 02.
Article in English | MEDLINE | ID: mdl-34952357

ABSTRACT

Nafion byproduct 2 (NBP2) is a polyfluoroalkyl ether sulfonic acid that was recently detected in surface water, drinking water, and human serum samples from monitoring studies in North Carolina, USA. We orally exposed pregnant Sprague-Dawley rats to NBP2 from gestation day (GD) 14-18 (0.1-30 mg/kg/d), GD17-21, and GD8 to postnatal day (PND) 2 (0.3-30 mg/kg/d) to characterize maternal, fetal, and postnatal effects. GD14-18 exposures were also conducted with perfluorooctane sulfonate (PFOS) for comparison to NBP2, as well as data previously published for hexafluoropropylene oxide-dimer acid (HFPO-DA or GenX). NBP2 produced stillbirth (30 mg/kg), reduced pup survival shortly after birth (10 mg/kg), and reduced pup body weight (10 mg/kg). Histopathological evaluation identified reduced glycogen stores in newborn pup livers and hepatocyte hypertrophy in maternal livers at ≥ 10 mg/kg. Exposure to NBP2 from GD14-18 reduced maternal serum total T3 and cholesterol concentrations (30 mg/kg). Maternal, fetal, and neonatal liver gene expression was investigated using RT-qPCR pathway arrays, while maternal and fetal livers were also analyzed using TempO-Seq transcriptomic profiling. Overall, there was limited alteration of genes in maternal or F1 livers from NBP2 exposure with significant changes mostly occurring in the top dose group (30 mg/kg) associated with lipid and carbohydrate metabolism. Metabolomic profiling indicated elevated maternal bile acids for NBP2, but not HFPO-DA or PFOS, while all three reduced 3-indolepropionic acid. Maternal and fetal serum and liver NBP2 concentrations were similar to PFOS, but ∼10-30-fold greater than HFPO-DA concentrations at a given maternal oral dose. NBP2 is a developmental toxicant in the rat, producing neonatal mortality, reduced pup body weight, reduced pup liver glycogen, reduced maternal thyroid hormones, and altered maternal and offspring lipid and carbohydrate metabolism similar to other studied PFAS, with oral toxicity for pup loss that is slightly less potent than PFOS but more potent than HFPO-DA.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/toxicity , Animals , Female , Fluorocarbon Polymers , Fluorocarbons/toxicity , Oxides , Pregnancy , Rats , Rats, Sprague-Dawley
6.
Environ Int ; 159: 107037, 2022 01 15.
Article in English | MEDLINE | ID: mdl-34896671

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) accumulation and elimination in both wildlife and humans is largely attributed to PFAS interactions with proteins, including but not limited to organic anion transporters (OATs), fatty acid binding proteins (FABPs), and serum proteins such as albumin. In wildlife, changes in the biotic and abiotic environment (e.g. salinity, temperature, reproductive stage, and health status) often lead to dynamic and responsive physiological changes that alter the prevalence and location of many proteins, including PFAS-related proteins. Therefore, we hypothesize that if key PFAS-related proteins are impacted as a result of environmentally induced as well as biologically programmed physiological changes (e.g. reproduction), then PFAS that associate with those proteins will also be impacted. Changes in tissue distribution across tissues of PFAS due to these dynamics may have implications for wildlife studies where these chemicals are measured in biological matrices (e.g., serum, feathers, eggs). For example, failure to account for factors contributing to PFAS variability in a tissue may result in exposure misclassification as measured concentrations may not reflect average exposure levels. The goal of this review is to share general information with the PFAS research community on what biotic and abiotic changes might be important to consider when designing and interpreting a biomonitoring or an ecotoxicity based wildlife study. This review will also draw on parallels from the epidemiological discipline to improve study design in wildlife research. Overall, understanding these connections between biotic and abiotic environments, dynamic protein levels, PFAS levels measured in wildlife, and epidemiology serves to strengthen study design and study interpretation and thus strengthen conclusions derived from wildlife studies for years to come.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Alkanesulfonic Acids/toxicity , Animals , Animals, Wild , Biological Monitoring , Fluorocarbons/analysis , Fluorocarbons/toxicity , Humans , Reproduction
7.
Environ Sci Technol Lett ; 8(6): 457-462, 2021 Jun 08.
Article in English | MEDLINE | ID: mdl-34527758

ABSTRACT

Of the thousands of per- and polyfluoroalkyl substances (PFAS) in the environment, few have been investigated in detail. In this study, we analyzed 36 legacy and emerging PFAS in multiple seabird tissues collected from individuals from Massachusetts Bay, Narragansett Bay and the Cape Fear River Estuary. PFOS was the dominant compound across multiple tissues, while long-chain perfluorinated carboxylic acids (PFCAs) dominated in brain (mean = 44% of total concentrations). Emerging perfluoroalkyl ether acids (PFEAs)-Nafion byproduct-2 and PFO5DoDA - were detected in greater than 90% of tissues in birds obtained from a nesting region downstream from a major fluorochemical production site. Compound ratios, relative body burden calculations, and electrostatic surface potential calculations were used to describe partitioning behavior of PFEAs in different tissues. Novel PFEAs preferentially partition into blood compared to liver, and were documented in brain for the first time. PFO5DoDA showed a reduced preference for brain compared to PFCAs and Nafion BP2. These results suggest future monitoring efforts and toxicological studies should focus on novel PFAS and long-chain PFCAs in multiple tissues beyond liver and blood, while exploring the unique binding mechanisms driving uptake of multi-ether PFEAs.

8.
Sci Total Environ ; 782: 146862, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33839655

ABSTRACT

On September 14, 2018, Hurricane Florence delivered ~686 mm rainfall to a 106 km2 watershed in coastal North Carolina, USA. A forested land treatment site comprises one third of the watershed wherein municipal wastewater effluent is spray-irrigated onto 8.9 km2 of forest. This communication provides insight for land treatment function under excess water duress as well as changes in organic chemical composition in on- and off-site waters before (June 2018) and after (September & December 2018) Hurricane Florence's landfall. We compare the numbers and relative abundances of chemical features detected using suspect screening high resolution mass spectrometry in waste-, ground-, and surface water samples. Values for upstream and receiving waters in September were lower than for sampling events in June and December, indicating an expected dilution effect across the watershed. Chemical diversity was greatest for all surface water samples in December, but only upstream surface water showed a dramatic five-fold increase in relative chemical abundance. Chemical abundance in on-site water and downstream surface water was equal to or lower than the September storm dilution effect. These data suggest that the land treatment system is functionally and hydrologically robust to extreme storm events and contributed to dilution of upstream chemical reservoirs for downstream receiving waters for months after the storm. Similar systems may embody one water reuse strategy robust to the increasing occurrence of extreme precipitation events.

9.
Environ Sci Technol Lett ; 8(1): 59-65, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33628855

ABSTRACT

Hundreds of public water systems across the United States have been contaminated by the use of aqueous film-forming foams (AFFF) containing per- and polyfluoroalkyl substances (PFAS) during firefighting and training activities. Prior work shows AFFF contain hundreds of polyfluoroalkyl precursors missed by standard methods. However, the most abundant precursors in AFFF remain uncertain, and mixture contents are confidential business information, hindering proactive management of PFAS exposure risks. Here, we develop and apply a novel method (Bayesian inference) for reconstructing the fluorinated chain lengths, manufacturing origin, and concentrations of oxidizable precursors obtained from the total oxidizable precursor (TOP) assay that is generally applicable to all aqueous samples. Results show virtually all (median 104 ± 19%) extractable organofluorine (EOF) in contemporary and legacy AFFF consists of targeted compounds and oxidizable precursors, 90% of which are 6:2 fluorotelomers in contemporary products. Using high-resolution mass spectrometry, we further resolved the 6:2 fluorotelomers to assign the identity of 14 major compounds, yielding a priority list that accounts for almost all detectable PFAS in contemporary AFFF. This combination of methods can accurately assign the total PFAS mass attributable to AFFF in any aqueous sample with differentiation of gross precursor classes and identification of major precursor species.

10.
Environ Sci Technol Lett ; 8(12): 1085-1090, 2021 Nov 19.
Article in English | MEDLINE | ID: mdl-35127964

ABSTRACT

The investigation of per- and polyfluorinated alkyl substances (PFAS) in environmental and biological samples relies on both high- and low-resolution mass spectrometry (MS) techniques. While high-resolution MS (HRMS) can be used for identification and quantification of novel compounds, low-resolution MS is the more commonly used and affordable approach for studies examining previously identified PFAS. Of note, perfluorobutanoic acid (PFBA) is one of the smaller PFAS observed in biological and environmental samples and has only one major MS/MS transition, preventing the use of qualitative transitions for verification. Recently, our laboratories undertook a targeted investigation of PFAS in the human placenta from high-risk pregnancies utilizing low-resolution, targeted MS/MS. Examination of placental samples revealed a widespread (n = 93/122 (76%)) chemical interferent in the quantitative ion channel for PFBA (213 → 169). PFBA concentrations were influenced by up to ∼3 ng/g. Therefore, additional chromatographic and HRMS/MS instrumentation was utilized to investigate the suspect peak and putatively assign the identity of the interfering compound as the saturated oxo-fatty acid (SOFA) 3-oxo-dodecanoic acid.

11.
Environ Int ; 146: 106204, 2021 01.
Article in English | MEDLINE | ID: mdl-33126064

ABSTRACT

Hexafluoropropylene oxide dimer acid (HFPO-DA or GenX) is an industrial replacement for the straight-chain perfluoroalkyl substance (PFAS), perfluorooctanoic acid (PFOA). Previously we reported maternal, fetal, and postnatal effects from gestation day (GD) 14-18 oral dosing in Sprague-Dawley rats. Here, we further evaluated the perinatal toxicity of HFPO-DA by orally dosing rat dams with 1-125 mg/kg/d (n = 4 litters per dose) from GD16-20 and with 10-250 mg/kg/d (n = 5) from GD8 - postnatal day (PND) 2. Effects of GD16-20 dosing were similar to those previously reported for GD14-18 dosing and included increased maternal liver weight, altered maternal serum lipid and thyroid hormone concentrations, and altered expression of peroxisome proliferator-activated receptor (PPAR) pathway genes in maternal and fetal livers. Dosing from GD8-PND2 produced similar effects as well as dose-responsive decreased pup birth weight (≥30 mg/kg), increased neonatal mortality (≥62.5 mg/kg), and increased pup liver weight (≥10 mg/kg). Histopathological evaluation of newborn pup livers indicated a marked reduction in glycogen stores and pups were hypoglycemic at birth. Quantitative gene expression analyses of F1 livers revealed significant alterations in genes related to glucose metabolism at birth and on GD20. Maternal serum and liver HFPO-DA concentrations were similar between dosing intervals, indicating rapid clearance, however dams dosed GD8 - PND2 had greater liver weight and gestational weight gain effects at lower doses than GD16-20 dosing, indicating the importance of exposure duration. Comparison of neonatal mortality dose-response curves between HFPO-DA and previously published perfluorooctane sulfonate (PFOS) data indicated that, based on serum concentration, the potency of these two PFAS are similar in the rat. Overall, HFPO-DA is a developmental toxicant in the rat and the spectrum of adverse effects is consistent with prior PFAS toxicity evaluations, such as PFOS and PFOA.


Subject(s)
Fluorocarbons , Oxides , Animals , Birth Weight , Female , Fluorocarbons/toxicity , Glucose , Hepatomegaly , Infant Mortality , Lipid Metabolism , Pregnancy , Rats , Rats, Sprague-Dawley
12.
Environ Sci Technol ; 54(23): 15024-15034, 2020 12 01.
Article in English | MEDLINE | ID: mdl-33176098

ABSTRACT

Aqueous film-forming foams (AFFF) are mixtures formulated with numerous hydrocarbon- and fluoro-containing surfactants. AFFF use leads to environmental releases of unknown per- and polyfluoroalkyl substances (PFAS). AFFF composition is seldom disclosed, and their use elicits concerns from both regulatory agencies and the public because PFAS are persistent in the environment and potentially associated with adverse health effects. In this study, we demonstrate the use of coupled liquid chromatography, ion mobility spectrometry, and mass spectrometry (LC-IMS-MS) to rapidly characterize both known and unknown PFAS in AFFF. Ten AFFF formulations from seven brands were analyzed using LC-IMS-MS in both negative and positive ion modes. Untargeted analysis of the formulations was followed by feature identification of PFAS-like features utilizing database matching, mass defect and homologous series evaluation, and MS/MS fragmentation experiments. Across the tested AFFF formulations, we identified 33 homologous series; only ten of these homologous series have been previously reported. Among tested AFFF, the FireStopper (n = 85) contained the greatest number of PFAS-like features and Phos-Check contained zero. This work demonstrates that LC-IMS-MS-enabled untargeted analysis of complex formulations, followed by feature identification using data-processing algorithms, can be used for rapid exposure characterization of known and putative PFAS during fire suppression-related contamination events.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Fluorocarbons/analysis , Ion Mobility Spectrometry , Tandem Mass Spectrometry , Water , Water Pollutants, Chemical/analysis
13.
Environ Sci Technol Lett ; 7(7): 477-481, 2020 May 18.
Article in English | MEDLINE | ID: mdl-32944590

ABSTRACT

Per- and polyfluorinated alkyl substances (PFAS) are of significant interest because of their prevalence and environmental persistence. Further, for many PFAS, including fluorinated ethers, such as hexafluoropropylene oxide dimer acid (HFPO-DA, or the parent acid of "GenX"), toxicological data are sparse. In general, in vitro testing frequently uses dimethyl sulfoxide (DMSO) as a carrier solvent due to its low toxicity, solubility across vast chemical space, and permeation across biological barriers. For PFAS, laboratory practice has assumed that the materials are stable across a wide range of solvents, pHs, and temperatures. In this study, HFPO-DA stability was evaluated with DMSO and other commonly used solvents to determine each solvent's suitability for use in toxicity assays. The formation of HFPO-DA's degradation product, heptafluoropropyl 1,2,2,2-tetrafluoroethyl ether (Fluoroether E-1), was monitored by headspace gas chromatography-mass spectrometry (GC-MS) over time. These experiments revealed degradation of HFPO-DA to Fluoroether E-1 in DMSO and other aprotic, polar solvents, with half-lives on the order of hours (1 h, 1.25 h, and 5.2 h for DMSO, acetone, and acetonitrile, respectively). This rapid degradation suggests the need for caution when performing or using data from toxicity assessments on HFPO-DA and closely related PFAS compounds.

14.
Environ Sci Technol ; 54(20): 12938-12948, 2020 10 20.
Article in English | MEDLINE | ID: mdl-32894676

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are anthropogenic, globally distributed chemicals. Legacy PFAS, including perfluorooctane sulfonate (PFOS), have been regularly detected in marine fauna but little is known about their current levels or the presence of novel PFAS in seabirds. We measured 36 emerging and legacy PFAS in livers from 31 juvenile seabirds from Massachusetts Bay, Narragansett Bay, and the Cape Fear River Estuary (CFRE), United States. PFOS was the major legacy perfluoroalkyl acid present, making up 58% of concentrations observed across all habitats (range: 11-280 ng/g). Novel PFAS were confirmed in chicks hatched downstream of a fluoropolymer production site in the CFRE: a perfluorinated ether sulfonic acid (Nafion byproduct 2; range: 1-110 ng/g) and two perfluorinated ether carboxylic acids (PFO4DA and PFO5DoDA; PFO5DoDA range: 5-30 ng/g). PFOS was inversely associated with phospholipid content in livers from CFRE and Massachusetts Bay individuals, while δ 13C, an indicator of marine versus terrestrial foraging, was positively correlated with some long-chain PFAS in CFRE chick livers. There is also an indication that seabird phospholipid dynamics are negatively impacted by PFAS, which should be further explored given the importance of lipids for seabirds.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Animals , Birds , Environmental Monitoring , Fluorocarbons/analysis , Humans , Massachusetts , Rivers , Sulfonic Acids/analysis , United States , Water Pollutants, Chemical/analysis
15.
Toxicology ; 441: 152522, 2020 08.
Article in English | MEDLINE | ID: mdl-32534104

ABSTRACT

Per- and polyfluoroalkyl substances (PFAS) are organic chemicals with wide industrial and consumer uses. They are found ubiquitously at low levels in the environment and are detectable in humans and wildlife. Perfluorobutane Sulfonate (PFBS) is a short-chained PFAS used to replace perfluorooctane sulfonate in commerce. In general, the rate of clearance for the short-chained PFAS is faster than that for the long-chained congeners. This study evaluated the pharmacokinetic properties of PFBS and its hepatic transcriptional responses in CD-1 mice. Males and females were given PFBS by oral gavage at 30 or 300 mg/kg; controls received 0.5 % Tween-20 vehicle. Trunk blood was collected at 0.5, 1, 2, 4, 8, 16 and 24 h thereafter; liver and kidney were also harvested. Serum and tissue concentrations of PFBS were determined by HPLC-MS-MS. Expression of several hepatic nuclear receptor target genes was determined by qPCR. The half-life of PFBS was estimated as 5.8 h in the males and 4.5 h in the females. Tmax was reached within 1-2 h. Volume of distribution was similar between the two sexes (0.32-0.40 L/kg). The rate of PFBS clearance was linear with exposure doses. Within 24 h, serum PFBS declined to less than 5 % of Cmax. PFBS was detected in liver or kidney, although tissue levels of the chemical were only a fraction of those in serum. At 24 h after administration of 300 mg/kg PFBS, elevated expression of several hepatic genes targeted for PPARα, PPARy, and PXR but not by AhR, LXR or CAR was observed, with responses indistinguishable between males and females. Little to no transcriptional response was seen with the 30 mg/kg dose. The short serum half-lives of PFBS (4-5 h) in mice were comparable to those reported in rats. Although detection of PFBS in liver was low compared to that in serum even at the 300 mg/kg dose, the tissue level was sufficient to activate several hepatic nuclear receptors, which may represent an acute response to the chemical at a high dose.


Subject(s)
Fluorocarbons/pharmacokinetics , Liver/drug effects , Receptors, Cytoplasmic and Nuclear/drug effects , Sulfonic Acids/pharmacokinetics , Animals , Dose-Response Relationship, Drug , Female , Half-Life , Kidney/drug effects , Kidney/metabolism , Liver/metabolism , Male , Metabolic Clearance Rate , Mice , Polymerase Chain Reaction , Receptors, Cytoplasmic and Nuclear/metabolism , Sex Factors , Transcriptome/drug effects
16.
Toxicology ; 441: 152529, 2020 08.
Article in English | MEDLINE | ID: mdl-32590024

ABSTRACT

1,1,2,2-tetrafluoro-2-[1,1,1,2,3,3-hexafluoro-3-(1,1,2,2-tetrafluoroethoxy)propan-2-yl]oxyethane-1-sulfonic acid (PFESA-BP2) was first detected in 2012 in the Cape Fear River downstream of an industrial manufacturing facility. It was later detected in the finished drinking water of municipalities using the Cape Fear River for their water supply. No toxicology data exist for this contaminant despite known human exposure. To address this data gap, mice were dosed with PFESA-BP2 at 0, 0.04, 0.4, 3, and 6 mg/kg-day for 7 days by oral gavage. As an investigative study, the final dose groups evolved from an original dose of 3 mg/kg which produced liver enlargement and elevated liver enzymes. The dose range was extended to explore a no effect level. PFESA-BP2 was detected in the sera and liver of all treated mice. Treatment with PFESA-BP2 significantly increased the size of the liver for all mice at 3 and 6 mg/kg-day. At the 6 mg/kg-day dose, the liver more than doubled in size compared to the control group. Male mice treated with 3 and 6 mg/kg-day and females treated with 6 mg/kg-day demonstrated significantly elevated serum markers of liver injury including alanine aminotransferase (ALT), glutamate dehydrogenase (GLDH), and liver/body weight percent. The percent of PFESA-BP2 in serum relative to the amount administered was similar in male and female mice, ranged from 9 to 13 %, and was not related to dose. The percent accumulation in the liver of the mice varied by sex (higher in males), ranged from 30 to 65 %, and correlated positively with increasing dose level.


Subject(s)
Hydrocarbons, Fluorinated/toxicity , Water Pollutants, Chemical/toxicity , Animals , Dose-Response Relationship, Drug , Female , Hydrocarbons, Fluorinated/blood , Hydrocarbons, Fluorinated/pharmacology , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred BALB C , Organ Size/drug effects , Water Pollutants, Chemical/blood , Water Pollutants, Chemical/pharmacokinetics
17.
Science ; 368(6495): 1103-1107, 2020 06 05.
Article in English | MEDLINE | ID: mdl-32499438

ABSTRACT

The toxicity and environmental persistence of anthropogenic per- and poly-fluoroalkyl substances (PFAS) are of global concern. To address legacy PFAS concerns in the United States, industry developed numerous replacement PFAS that commonly are treated as confidential information. To investigate the distribution of PFAS in New Jersey, soils collected from across the state were subjected to nontargeted mass-spectral analyses. Ten chloroperfluoropolyether carboxylates were tentatively identified, with at least three congeners in all samples. Nine congeners are ≥(CF2)7 Distinct chemical formulas and structures, as well as geographic distribution, suggest airborne transport from an industrial source. Lighter congeners dispersed more widely than heavier congeners, with the most widely dispersed detected in an in-stock New Hampshire sample. Additional data were used to develop a legacy-PFAS fingerprint for historical PFAS sources in New Jersey.


Subject(s)
Carboxylic Acids/analysis , Conservation of Natural Resources , Ethers/analysis , Fluorocarbons/analysis , Soil/chemistry , Carboxylic Acids/toxicity , Ethers/toxicity , Fluorocarbons/toxicity , Mass Spectrometry , New Jersey
18.
Environ Sci Technol ; 54(12): 7175-7184, 2020 06 16.
Article in English | MEDLINE | ID: mdl-32458687

ABSTRACT

Perfluorooctanoic acid (PFOA) was used as a fluoropolymer manufacturing aid at a fluoropolymer production facility in Parkersburg, WV from 1951 to 2013. The manufacturer introduced a replacement surfactant hexafluoropropylene oxide dimer acid (HFPO-DA) that has been in use at this site since 2013. Historical releases of PFOA and related epidemiological work in this area has been primarily focused on communities downstream. To provide an update on the ongoing impacts from this plant, 94 surface water samples and 13 soil samples were collected mainly upstream and downwind of this facility. PFOA was detected in every surface water sample with concentrations exceeding 1000 ng/L at 13 sample sites within an 8 km radius of the plant. HFPO-DA was also found to be widespread with the highest levels (>100 ng/L) found in surface water up to 6.4 km north of the plant. One sample site, 28 km north of the plant, had PFOA at 143 ng/L and HFPO-DA at 42 ng/L. Sites adjacent to landfills containing fluorochemical waste had PFOA concentrations ranging up to >1000 ng/L. These data indicate that downwind atmospheric transport of both compounds has occurred and that the boundaries of the impact zone have yet to be fully delineated.


Subject(s)
Fluorocarbons , Water Pollutants, Chemical , Caprylates , Environmental Monitoring , Fluorocarbons/analysis , Ohio , Oxides , Soil , Water , Water Pollutants, Chemical/analysis , West Virginia
19.
Environ Sci Technol ; 54(11): 6800-6811, 2020 06 02.
Article in English | MEDLINE | ID: mdl-32345015

ABSTRACT

Per- and polyfluoroalkyl substances (PFASs) have attracted scientific and regulatory attention due to their persistence, bioaccumulative potential, toxicity, and global distribution. We determined the accumulation and trophic transfer of 14 PFASs (5 short-chain and 9 long-chain) within the food web of the Yadkin-Pee Dee River of North Carolina and South Carolina, US. Food web components and pathways were determined by stable isotope analyses of producers, consumers, and organic matter. Analyses of water, sediment, organic matter, and aquatic biota revealed that PFASs were prevalent in all food web compartments. Biofilm, an aggregation of bacteria, fungi, algae, and protozoans and a basal resource for the aquatic food web, showed high PFAS accumulation (in 10 of 14 compounds), particularly for perfluorooctanoic acid, with the greatest mean concentration of 463.73 ng/g. The food web compartment with the most detections and greatest concentrations of PFASs was aquatic insects; all 14 PFASs were detected in individual aquatic insect samples (range of 1.0 (range of 0.57 to 2.33); it is possible that an unmeasured PFBS precursor may be accumulating in biota and metabolizing to PFBS, leading to a higher than expected TMFs for this compound. Our findings demonstrate the prevalence of PFASs in a freshwater food web with potential implications for ecological and human health.


Subject(s)
Alkanesulfonic Acids , Fluorocarbons , Water Pollutants, Chemical , Alkanesulfonic Acids/analysis , Animals , Environmental Monitoring , Fluorocarbons/analysis , Food Chain , Humans , North Carolina , Rivers , South Carolina , Water Pollutants, Chemical/analysis
20.
Environ Health Perspect ; 128(2): 27006, 2020 02.
Article in English | MEDLINE | ID: mdl-32074459

ABSTRACT

BACKGROUND: Perfluorooctanoic acid (PFOA) is a poly- and perfluoroalkyl substance (PFAS) associated with adverse pregnancy outcomes in mice and humans, but little is known regarding one of its replacements, hexafluoropropylene oxide dimer acid (HFPO-DA, referred to here as GenX), both of which have been reported as contaminants in drinking water. OBJECTIVES: We compared the toxicity of PFOA and GenX in pregnant mice and their developing embryo-placenta units, with a specific focus on the placenta as a hypothesized target. METHODS: Pregnant CD-1 mice were exposed daily to PFOA (0, 1, or 5mg/kg) or GenX (0, 2, or 10mg/kg) via oral gavage from embryonic day (E) 1.5 to 11.5 or 17.5 to evaluate exposure effects on the dam and embryo-placenta unit. Gestational weight gain (GWG), maternal clinical chemistry, maternal liver histopathology, placental histopathology, embryo weight, placental weight, internal chemical dosimetry, and placental thyroid hormone levels were determined. RESULTS: Exposure to GenX or PFOA resulted in increased GWG, with increase in weight most prominent and of shortest latency with 10mg/kg/d GenX exposure. Embryo weight was significantly lower after exposure to 5mg/kg/d PFOA (9.4% decrease relative to controls). Effect sizes were similar for higher doses (5mg/kg/d PFOA and 10mg/kg/d GenX) and lower doses (1mg/kg/d PFOA and 2mg/kg/d GenX), including higher maternal liver weights, changes in liver histopathology, higher placental weights and embryo-placenta weight ratios, and greater incidence of placental abnormalities relative to controls. Histopathological features in placentas suggested that PFOA and GenX may exhibit divergent mechanisms of toxicity in the embryo-placenta unit, whereas PFOA- and GenX-exposed livers shared a similar constellation of adverse pathological features. CONCLUSIONS: Gestational exposure to GenX recapitulated many documented effects of PFOA in CD-1 mice, regardless of its much shorter reported half-life; however, adverse effects toward the placenta appear to have compound-specific signatures. https://doi.org/10.1289/EHP6233.


Subject(s)
Caprylates/toxicity , Fluorocarbons/toxicity , Hydrocarbons, Fluorinated/toxicity , Placenta/drug effects , Toxicity Tests , Animals , Female , Mice , Neprilysin , Pregnancy/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...