Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Front Microbiol ; 15: 1394078, 2024.
Article in English | MEDLINE | ID: mdl-38711974

ABSTRACT

As antibiotic resistance increases and antibiotic development dwindles, new antimicrobial agents are needed. Recent advances in nanoscale engineering have increased interest in metal oxide nanoparticles, particularly zinc oxide nanoparticles, as antimicrobial agents. Zinc oxide nanoparticles are promising due to their broad-spectrum antibacterial activity and low production cost. Despite many studies demonstrating the effectiveness of zinc oxide nanoparticles, the antibacterial mechanism is still unknown. Previous work has implicated the role of reactive oxygen species such as hydrogen peroxide, physical damage of the cell envelope, and/or release of toxic Zn2+ ions as possible mechanisms of action. To evaluate the role of these proposed methods, we assessed the susceptibility of S. aureus mutant strains, ΔkatA and ΔmprF, to zinc oxide nanoparticles of approximately 50 nm in size. These assays demonstrated that hydrogen peroxide and electrostatic interactions are not crucial for mediating zinc oxide nanoparticle toxicity. Instead, we found that Zn2+ accumulates in Mueller-Hinton Broth over time and that removal of Zn2+ through chelation reverses this toxicity. Furthermore, we found that the physical separation of zinc oxide nanoparticles and bacterial cells using a semi-permeable membrane still allows for growth inhibition. We concluded that soluble Zn2+ is the primary mechanism by which zinc oxide nanoparticles mediate toxicity in Mueller-Hinton Broth. Future work investigating how factors such as particle morphology (e.g., size, polarity, surface defects) and media contribute to Zn2+ dissolution could allow for the synthesis of zinc oxide nanoparticles that possess chemical and morphological properties best suited for antibacterial efficacy.

2.
Nanomaterials (Basel) ; 14(8)2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38668202

ABSTRACT

The cubic zirconia (ZrO2) is attractive for a broad range of applications. However, at room temperature, the cubic phase needs to be stabilized. The most studied stabilization method is the addition of the oxides of trivalent metals, such as Sc2O3. Another method is the stabilization of the cubic phase in nanostructures-nanopowders or nanocrystallites of pure zirconia. We studied the relationship between the size factor and the dopant concentration range for the formation and stabilization of the cubic phase in scandium-stabilized zirconia (ScSZ) films. The thin films of (ZrO2)1-x(Sc2O3)x, with x from 0 to 0.2, were deposited on room-temperature substrates by reactive direct current magnetron co-sputtering. The crystal structure of films with an average crystallite size of 85 Å was cubic at Sc2O3 content from 6.5 to 17.5 mol%, which is much broader than the range of 8-12 mol.% of the conventional deposition methods. The sputtering of ScSZ films on hot substrates resulted in a doubling of crystallite size and a decrease in the cubic phase range to 7.4-11 mol% of Sc2O3 content. This confirmed that the size of crystallites is one of the determining factors for expanding the concentration range for forming and stabilizing the cubic phase of ScSZ films.

3.
Nanomaterials (Basel) ; 13(10)2023 May 16.
Article in English | MEDLINE | ID: mdl-37242068

ABSTRACT

Nano- and microscale zinc oxide (ZnO) exhibits significant potential as a novel antibacterial agent in biomedical applications. However, the uncertainty regarding the underlying mechanisms of the observed antimicrobial action inhibits the realization of this potential. Particularly, the nature of interactions at the free crystalline surface and the influence of the local bacterial environment remains unclear. In this investigation, we utilize ZnO particles synthesized via tunable hydrothermal growth method as a platform to elucidate the effects of interactions with phosphate-rich environments and differentiate them from those with bacteria. This is achieved using the time- and energy-dependent surface photovoltage (SPV) to monitor modifications of the surface electronic structure and surface charge dynamics of the ZnO particles due to these interactions. It is found that there exists a dramatic change in the SPV transients after exposure to phosphate-rich environments. It also presents differences in the sub-bandgap surface electronic structure after these exposures. It can be suggested that these phenomena are a consequence of phosphate adsorption at surface traps corresponding to zinc deficiency defects. This effect is shown to be suppressed in the presence of Staphylococcus aureus bacteria. Our results support the previously proposed model of the competitive nature of interactions between S. aureus and aqueous phosphates with the free surface of ZnO and bring greater clarity to the effects of phosphate-rich environments on bacterial growth inhibition of ZnO.

4.
Methods Appl Fluoresc ; 10(2)2022 Feb 02.
Article in English | MEDLINE | ID: mdl-35042210

ABSTRACT

We studied room temperature phosphorescence of tryptophan (TRP) embedded in poly (vinyl alcohol) films. With UV (285 nm) excitation, the phosphorescence spectrum of tryptophan appears at about 460 nm. We also observed the TRP phosphorescence with blue light excitation at 410 nm, well outside of the S0→S1absorption. This excitation reaches the triplet state of tryptophan directly without the involvement of the singlet excited state. The phosphorescence lifetime of tryptophan is in the sub-millisecond range. The long-wavelength direct excitation to the triplet state results in high phosphorescence anisotropy which can be useful in macromolecule dynamics study via time-resolved phosphorescence.


Subject(s)
Tryptophan
5.
Biointerphases ; 16(3): 031003, 2021 06 17.
Article in English | MEDLINE | ID: mdl-34241188

ABSTRACT

Nano- and microcrystalline ZnO is an inexpensive, easily synthesized material with a multitude of applications. Its usefulness in the present and future stems from its exceptional optoelectronic, structural, and chemical characteristics as well as a broad range of production techniques. One application comes from its ability to inhibit bacterial growth. Despite the well-documented, vigorously studied antimicrobial action of ZnO particles, the most fundamental physical and chemical mechanisms driving growth inhibition are still not well identified. Particularly, the nature of interactions between ZnO surfaces and extracellular material is not totally clear. This is important given the anisotropic lattice of ZnO leading to two characteristically different lattice terminations: polar and nonpolar, polar being electrically charged with many defect sites and nonpolar being electrically neutral while remaining relatively defect-free. In this work, we employ a hydrothermal growth protocol that allows us to produce ZnO microcrystals with dependable control of morphology and, particularly, the relative abundances of polar and nonpolar free surfaces. This functions as a platform for our investigations into surface-surface interactions behind the antibacterial action of ZnO microcrystals. In our studies, we produced ZnO crystals comparable in size or larger than Staphylococcus aureus bacteria. This was done intentionally to ensure that the ZnO particles would not internalize into the bacterial cells. Our experiments were performed in conjunction with surface photovoltage studies of ZnO crystals to characterize electronic structure and charge dynamics that might be contributing to the antibacterial properties of our samples. We report on the interactions between ZnO microcrystalline surfaces and extracellular material of Staphylococcus aureus bacteria.


Subject(s)
Anti-Bacterial Agents/pharmacology , Staphylococcus aureus/drug effects , Zinc Oxide/chemistry , Anti-Bacterial Agents/chemistry , Crystallization , Microbial Sensitivity Tests , Optogenetics , Surface Properties , Zinc Oxide/pharmacology
6.
Methods Appl Fluoresc ; 4(4): 047001, 2016 11 17.
Article in English | MEDLINE | ID: mdl-28192308

ABSTRACT

A fluorescence lifetime imaging probe with a long lifetime was used in combination with time-gating for the detection of hyaluronidase using hyaluronic acid as the probe template. This probe was developed by heavily labeling hyaluronic acid with long lifetime azadioxatriangulenium fluorophores (ADOTA). We used this probe to image hyaluronidase produced by DU-145 prostate cancer cells.


Subject(s)
Hyaluronoglucosaminidase/metabolism , Aza Compounds , Cell Line, Tumor , Fluorescence , Fluorescence Resonance Energy Transfer , Fluorescent Dyes , Humans , Hyaluronic Acid , Ionophores , Male , Microscopy, Fluorescence , Optical Imaging , Spectrometry, Fluorescence
7.
Materials (Basel) ; 7(1): 471-483, 2014 Jan 16.
Article in English | MEDLINE | ID: mdl-28788468

ABSTRACT

As-received BaTiO3 nanopowders of average grain sizes 50 nm and 100 nm were functionalized by (3-aminopropyl)triethoxysilane (APTES) and mixed with poly(methyl methacrylate)/toluene solution. The nanocomposite solution was spin coated on Si substrates to form thin films. The photoluminescence spectrum of the pure powder was composed of a bandgap emission at 3.0 eV and multiple bands centered about 2.5 eV. Surface functionalization of the BaTiO3 powder via APTES increases overall luminescence at room temperature while only enhancing bandgap emission at low-temperature. Polymer coating of the functionalized nanoparticles significantly enhances bandgap emissions while decreasing emissions associated with near-surface lattice distortions at 2.5 eV.

SELECTION OF CITATIONS
SEARCH DETAIL
...