Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Soft Robot ; 2024 Aug 02.
Article in English | MEDLINE | ID: mdl-39092483

ABSTRACT

Sound is a rich information medium that transmits through air; people communicate through speech and can even discern material through tapping and listening. To capture frequencies in the human hearing range, commercial microphones typically have a sampling rate of over 40 kHz. These accessible acoustic technologies are not yet widely adopted for the explicit purpose of giving robots a sense of touch. Some researchers have used sound to sense tactile information, both monitoring ambient soundscape and with embedded speakers and microphones to measure sounds within structures. However, these options commonly do not provide a direct measure of steady state force or require electronics integrated somewhere near the contact location. In this work, we present AcousTac, an acoustic tactile sensor for electronics-free, force-sensitive soft skin. Compliant silicone caps and plastic tubes compose the resonant chambers that emit pneumatic-driven sound measurable with a conventional off-board microphone. The resulting frequency changes depend on the external loads on the compliant endcaps. The compliant cap vibrates with the resonant pressure waves and is a nonidealized boundary condition, initially producing a nonmonotonic force response. We characterize two solutions-adding a distal hole and mass to the cap-resulting in monotonic and nonhysteretic force readings with this technology. We can tune each AcousTac taxel to specific force and frequency ranges, based on geometric parameters including tube length, and thus uniquely sense each taxel simultaneously in an array. We demonstrate AcousTac's functionality on two robotic systems: a 4-taxel array and a 3-taxel astrictive gripper. Simple to implement with off-the-shelf parts, AcousTac is a promising concept for force sensing on soft robotic surfaces, especially in situations where electronics near the contact are not suitable. Equipping robots with tactile sensing and soft skin provides them with a sense of touch and the ability to safely interact with their surroundings.

2.
Dev Cell ; 59(15): 1940-1953.e10, 2024 Aug 05.
Article in English | MEDLINE | ID: mdl-38776925

ABSTRACT

During neural tube (NT) development, the notochord induces an organizer, the floorplate, which secretes Sonic Hedgehog (SHH) to pattern neural progenitors. Conversely, NT organoids (NTOs) from embryonic stem cells (ESCs) spontaneously form floorplates without the notochord, demonstrating that stem cells can self-organize without embryonic inducers. Here, we investigated floorplate self-organization in clonal mouse NTOs. Expression of the floorplate marker FOXA2 was initially spatially scattered before resolving into multiple clusters, which underwent competition and sorting, resulting in a stable "winning" floorplate. We identified that BMP signaling governed long-range cluster competition. FOXA2+ clusters expressed BMP4, suppressing FOXA2 in receiving cells while simultaneously expressing the BMP-inhibitor NOGGIN, promoting cluster persistence. Noggin mutation perturbed floorplate formation in NTOs and in the NT in vivo at mid/hindbrain regions, demonstrating how the floorplate can form autonomously without the notochord. Identifying the pathways governing organizer self-organization is critical for harnessing the developmental plasticity of stem cells in tissue engineering.


Subject(s)
Bone Morphogenetic Protein 4 , Neural Tube , Notochord , Organoids , Animals , Mice , Organoids/metabolism , Organoids/cytology , Neural Tube/metabolism , Neural Tube/cytology , Notochord/metabolism , Notochord/cytology , Bone Morphogenetic Protein 4/metabolism , Signal Transduction , Hepatocyte Nuclear Factor 3-beta/metabolism , Hepatocyte Nuclear Factor 3-beta/genetics , Hedgehog Proteins/metabolism , Hedgehog Proteins/genetics , Carrier Proteins/metabolism , Carrier Proteins/genetics , Gene Expression Regulation, Developmental , Bone Morphogenetic Proteins/metabolism
3.
bioRxiv ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38585810

ABSTRACT

Generating balanced populations of CD8 effector and memory T cells is necessary for immediate and durable immunity to infections and cancer. Yet, a definitive understanding of CD8 differentiation remains unclear. We used CARLIN, a processive lineage recording mouse model with single-cell RNA-seq and TCR-seq to track endogenous antigen-specific CD8 T cells during acute viral infection. We identified a diverse repertoire of expanded T-cell clones represented by seven transcriptional states. TCR enrichment analysis revealed differential memory- or effector-fate biases within clonal populations. Shared Vb segments and amino acid motifs were found within biased categories despite high TCR diversity. Using single-cell CARLIN barcode-seq we tracked multi-generational clones and found that unlike unbiased or memory-biased clones, which stably retain their fate profiles, effector-biased clones could adopt memory- or effector-bias within subclones. Collectively, our study demonstrates that a heterogenous T-cell repertoire specific for a shared antigen is composed of clones with distinct TCR-intrinsic fate-biases.

SELECTION OF CITATIONS
SEARCH DETAIL