Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 5 de 5
Filter
Add more filters










Database
Language
Publication year range
1.
New Phytol ; 242(6): 2411-2429, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38659154

ABSTRACT

Bryophytes, including the lineages of mosses, liverworts, and hornworts, are the second-largest photoautotroph group on Earth. Recent work across terrestrial ecosystems has highlighted how bryophytes retain and control water, fix substantial amounts of carbon (C), and contribute to nitrogen (N) cycles in forests (boreal, temperate, and tropical), tundra, peatlands, grasslands, and deserts. Understanding how changing climate affects bryophyte contributions to global cycles in different ecosystems is of primary importance. However, because of their small physical size, bryophytes have been largely ignored in research on water, C, and N cycles at global scales. Here, we review the literature on how bryophytes influence global biogeochemical cycles, and we highlight that while some aspects of global change represent critical tipping points for survival, bryophytes may also buffer many ecosystems from change due to their capacity for water, C, and N uptake and storage. However, as the thresholds of resistance of bryophytes to temperature and precipitation regime changes are mostly unknown, it is challenging to predict how long this buffering capacity will remain functional. Furthermore, as ecosystems shift their global distribution in response to changing climate, the size of different bryophyte-influenced biomes will change, resulting in shifts in the magnitude of bryophyte impacts on global ecosystem functions.


Subject(s)
Bryophyta , Climate Change , Nitrogen Cycle , Water , Bryophyta/physiology , Water/metabolism , Carbon Cycle , Carbon/metabolism , Nitrogen/metabolism , Ecosystem
2.
Glob Chang Biol ; 29(3): 780-793, 2023 02.
Article in English | MEDLINE | ID: mdl-36308039

ABSTRACT

A small imbalance in plant productivity and decomposition accounts for the carbon (C) accumulation capacity of peatlands. As climate changes, the continuity of peatland net C storage relies on rising primary production to offset increasing ecosystem respiration (ER) along with the persistence of older C in waterlogged peat. A lowering in the water table position in peatlands often increases decomposition rates, but concurrent plant community shifts can interactively alter ER and plant productivity responses. The combined effects of water table variation and plant communities on older peat C loss are unknown. We used a full-factorial 1-m3 mesocosm array with vascular plant functional group manipulations (Unmanipulated Control, Sedge only, and Ericaceous only) and water table depth (natural and lowered) treatments to test the effects of plants and water depth on CO2 fluxes, decomposition, and older C loss. We used Δ14 C and δ13 C of ecosystem CO2 respiration, bulk peat, plants, and porewater dissolved inorganic C to construct mixing models partitioning ER among potential sources. We found that the lowered water table treatments were respiring C fixed before the bomb spike (1955) from deep waterlogged peat. Lowered water table Sedge treatments had the oldest dissolved inorganic 14 C signature and the highest proportional peat contribution to ER. Decomposition assays corroborated sustained high rates of decomposition with lowered water tables down to 40 cm below the peat surface. Heterotrophic respiration exceeded plant respiration at the height of the growing season in lowered water table treatments. Rates of gross primary production were only impacted by vegetation, whereas ER was affected by vegetation and water table depth treatments. The decoupling of respiration and primary production with lowered water tables combined with older C losses suggests that climate and land-use-induced changes in peatland hydrology can increase the vulnerability of peatland C stores.


Subject(s)
Ecosystem , Groundwater , Carbon Dioxide/analysis , Carbon , Plants , Soil
3.
Oecologia ; 197(1): 283-295, 2021 Sep.
Article in English | MEDLINE | ID: mdl-34319437

ABSTRACT

Moss-associated N2 fixation by epiphytic microbes is a key biogeochemical process in nutrient-limited high-latitude ecosystems. Abiotic drivers, such as temperature and moisture, and the identity of host mosses are critical sources of variation in N2 fixation rates. An understanding of the potential interaction between these factors is essential for predicting N inputs as moss communities change with the climate. To further understand the drivers and results of N2 fixation rate variation, we obtained natural abundance values of C and N isotopes and an associated rate of N2 fixation with 15N2 gas incubations in 34 moss species collected in three regions across Alaska, USA. We hypothesized that δ15N values would increase toward 0‰ with higher N2 fixation to reflect the increasing contribution of fixed N2 in moss biomass. Second, we hypothesized that δ13C and N2 fixation would be positively related, as enriched δ13C signatures reflect abiotic conditions favorable to N2 fixation. We expected that the magnitude of these relationships would vary among types of host mosses, reflecting differences in anatomy and habitat. We found little support for our first hypothesis, with only a modest positive relationship between N2 fixation rates and δ15N in a structural equation model. We found a significant positive relationship between δ13C and N2 fixation only in Hypnales, where the probability of N2 fixation activity reached 95% when δ13C values exceeded - 30.4‰. We conclude that moisture and temperature interact strongly with host moss identity in determining the extent to which abiotic conditions impact associated N2 fixation rates.


Subject(s)
Bryophyta , Nitrogen Fixation , Biomass , Ecosystem , Isotopes
4.
Microbiome ; 9(1): 53, 2021 02 23.
Article in English | MEDLINE | ID: mdl-33622403

ABSTRACT

BACKGROUND: Mosses in high-latitude ecosystems harbor diverse bacterial taxa, including N2-fixers which are key contributors to nitrogen dynamics in these systems. Yet the relative importance of moss host species, and environmental factors, in structuring these microbial communities and their N2-fixing potential remains unclear. We studied 26 boreal and tundra moss species across 24 sites in Alaska, USA, from 61 to 69° N. We used cultivation-independent approaches to characterize the variation in moss-associated bacterial communities as a function of host species identity and site characteristics. We also measured N2-fixation rates via 15N2 isotopic enrichment and identified potential N2-fixing bacteria using available literature and genomic information. RESULTS: Host species identity and host evolutionary history were both highly predictive of moss microbiome composition, highlighting strong phylogenetic coherence in these microbial communities. Although less important, light availability and temperature also influenced composition of the moss microbiome. Finally, we identified putative N2-fixing bacteria specific to some moss hosts, including potential N2-fixing bacteria outside well-studied cyanobacterial clades. CONCLUSIONS: The strong effect of host identity on moss-associated bacterial communities demonstrates mosses' utility for understanding plant-microbe interactions in non-leguminous systems. Our work also highlights the likely importance of novel bacterial taxa to N2-fixation in high-latitude ecosystems. Video Abstract.


Subject(s)
Bryophyta/microbiology , Nitrogen Fixation , Nitrogen-Fixing Bacteria/classification , Nitrogen-Fixing Bacteria/metabolism , Alaska , Phylogeny
5.
Environ Microbiol ; 20(7): 2625-2638, 2018 07.
Article in English | MEDLINE | ID: mdl-29901277

ABSTRACT

Mosses are critical components of boreal ecosystems where they typically account for a large proportion of net primary productivity and harbour diverse bacterial communities that can be the major source of biologically-fixed nitrogen in these ecosystems. Despite their ecological importance, we have limited understanding of how microbial communities vary across boreal moss species and the extent to which local site conditions may influence the composition of these bacterial communities. We used marker gene sequencing to analyze bacterial communities associated with seven boreal moss species collected near Fairbanks, AK, USA. We found that host identity was more important than site in determining bacterial community composition and that mosses harbour diverse lineages of potential N2 -fixers as well as an abundance of novel taxa assigned to understudied bacterial phyla (including candidate phylum WPS-2). We performed shotgun metagenomic sequencing to assemble genomes from the WPS-2 candidate phylum and found that these moss-associated bacteria are likely anoxygenic phototrophs capable of carbon fixation via RuBisCo with an ability to utilize byproducts of photorespiration from hosts via a glyoxylate shunt. These results give new insights into the metabolic capabilities of understudied bacterial lineages that associate with mosses and the importance of plant hosts in shaping their microbiomes.


Subject(s)
Bacteria/isolation & purification , Bryophyta/microbiology , Alaska , Bacteria/classification , Bacteria/genetics , Microbiota , Nitrogen Fixation
SELECTION OF CITATIONS
SEARCH DETAIL
...