Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Neurology ; 100(5): e543-e554, 2023 01 31.
Article in English | MEDLINE | ID: mdl-36289003

ABSTRACT

BACKGROUND AND OBJECTIVE: Cerebellar ataxia, neuropathy, and vestibular areflexia syndrome (CANVAS) is an autosomal recessive neurodegenerative disease characterized by adult-onset and slowly progressive sensory neuropathy, cerebellar dysfunction, and vestibular impairment. In most cases, the disease is caused by biallelic (AAGGG)n repeat expansions in the second intron of the replication factor complex subunit 1 (RFC1). However, a small number of cases with typical CANVAS do not carry the common biallelic repeat expansion. The objective of this study was to expand the genotypic spectrum of CANVAS by identifying sequence variants in RFC1-coding region associated with this condition. METHODS: Fifteen individuals diagnosed with CANVAS and carrying only 1 heterozygous (AAGGG)n expansion in RFC1 underwent whole-genome sequencing or whole-exome sequencing to test for the presence of a second variant in RFC1 or other unrelated gene. To assess the effect of truncating variants on RFC1 expression, we tested the level of RFC1 transcript and protein on patients' derived cell lines. RESULTS: We identified 7 patients from 5 unrelated families with clinically defined CANVAS carrying a heterozygous (AAGGG)n expansion together with a second truncating variant in trans in RFC1, which included the following: c.1267C>T (p.Arg423Ter), c.1739_1740del (p.Lys580SerfsTer9), c.2191del (p.Gly731GlufsTer6), and c.2876del (p.Pro959GlnfsTer24). Patient fibroblasts containing the c.1267C>T (p.Arg423Ter) or c.2876del (p.Pro959GlnfsTer24) variants demonstrated nonsense-mediated mRNA decay and reduced RFC1 transcript and protein. DISCUSSION: Our report expands the genotype spectrum of RFC1 disease. Full RFC1 sequencing is recommended in cases affected by typical CANVAS and carrying monoallelic (AAGGG)n expansions. In addition, it sheds further light on the pathogenesis of RFC1 CANVAS because it supports the existence of a loss-of-function mechanism underlying this complex neurodegenerative condition.


Subject(s)
Bilateral Vestibulopathy , Cerebellar Ataxia , Neurodegenerative Diseases , Peripheral Nervous System Diseases , Vestibular Diseases , Adult , Humans , Cerebellar Ataxia/genetics , Cerebellar Ataxia/diagnosis , Bilateral Vestibulopathy/genetics , Bilateral Vestibulopathy/diagnosis , Vestibular Diseases/genetics , Syndrome
2.
Front Cell Neurosci ; 16: 844211, 2022.
Article in English | MEDLINE | ID: mdl-35573838

ABSTRACT

Several neurodegenerative diseases are characterized by the accumulation of aggregated misfolded proteins. These pathological agents have been suggested to propagate in the brain via mechanisms similar to that observed for the prion protein, where a misfolded variant is transferred from an affected brain region to a healthy one, thereby inducing the misfolding and/or aggregation of correctly folded copies. This process has been characterized for several proteins, such as α-synuclein, tau, amyloid beta (Aß) and less extensively for huntingtin and TDP-43. α-synuclein, tau, TDP-43 and huntingtin are intracellular proteins, and their aggregates are located in the cytosol or nucleus of neurons. They have been shown to spread between cells and this event occurs, at least partially, via secretion of these protein aggregates in the extracellular space followed by re-uptake. Conversely, Aß aggregates are found mainly extracellularly, and their spreading occurs in the extracellular space between brain regions. Due to the inherent nature of their spreading modalities, these proteins are exposed to components of the extracellular matrix (ECM), including glycans, proteases and core matrix proteins. These ECM components can interact with or process pathological misfolded proteins, potentially changing their properties and thus regulating their spreading capabilities. Here, we present an overview of the documented roles of ECM components in the spreading of pathological protein aggregates in neurodegenerative diseases with the objective of identifying the current gaps in knowledge and stimulating further research in the field. This could potentially lead to the identification of druggable targets to slow down the spreading and/or progression of these pathologies.

3.
Brain Sci ; 8(7)2018 Jul 10.
Article in English | MEDLINE | ID: mdl-29996490

ABSTRACT

The basal forebrain has received much attention due to its involvement in multiple cognitive functions, but little is known about the basic neuronal mechanisms underlying its development, nor those mediating its primary role in Alzheimer’s disease. We have previously suggested that a novel 14-mer peptide, ‘T14’, could play a pivotal role in Alzheimer’s disease, via reactivation of a developmental signaling pathway. In this study, we have characterized T14 in the context of post-natal rat brain development, using a combination of different techniques. Ex-vivo rat brain slices containing the basal forebrain, at different stages of development, were used to investigate large-scale neuronal network activity in real time with voltage-sensitive dye imaging. Subsequent Western blot analysis revealed the expression profile of endogenous T14, its target alpha7 nicotinic receptor and the familiar markers of Alzheimer’s: amyloid beta and phosphorylated Tau. Results indicated maximal neuronal activity at the earliest ages during development, reflected in a concomitant profile of T14 peptide levels and related proteins. In conclusion, these findings show that the peptide, already implicated in neurodegenerative events, has an age-dependent expression, suggesting a possible contribution to the physiological mechanisms underlying brain maturation.

4.
Front Cell Neurosci ; 11: 291, 2017.
Article in English | MEDLINE | ID: mdl-29033787

ABSTRACT

Currently there is no widely accepted animal model reproducing the full pathological profile of Alzheimer's disease (AD), since the basic mechanisms of neurodegeneration are still poorly understood. We have proposed that the interaction between the α7 nicotinic acetylcholine receptor (α7-nAChR) and a recently discovered toxic peptide, cleaved from the acetylcholinesterase (AChE) C-terminus, could account for the aberrant processes occurring in AD. In this article we describe a new application on ex vivo model procedure, which combines the advantages of both in vivo and in vitro preparations, to study the effects of the AChE-derived peptide on the rat basal forebrain (BF). Western blot analysis showed that the levels of α7-nAChR, p-Tau and Aß are differentially expressed upon the AChE-peptide administration, in a selective site-dependent manner. In conclusion, this methodology demonstrates the action of a novel peptide in triggering an AD-like phenotype and proposes a new ex vivo approach for manipulating and monitoring neurochemical processes contributing to neurodegeneration, in a time-dependent and site-specific manner.

SELECTION OF CITATIONS
SEARCH DETAIL
...